These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 16599477)

  • 1. A first-principles investigation of LiNH(2) as a hydrogen-storage material: effects of substitutions of K and Mg for Li.
    Zhang C; Alavi A
    J Phys Chem B; 2006 Apr; 110(14):7139-43. PubMed ID: 16599477
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of destabilized metal hydrides for hydrogen storage using first principles calculations.
    Alapati SV; Johnson JK; Sholl DS
    J Phys Chem B; 2006 May; 110(17):8769-76. PubMed ID: 16640434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of hydrogen absorption in Li7VN4 and Li7MnN4.
    He G; Herbst JF; Ramesh TN; Pinkerton FE; Meyer MS; Nazar L
    Phys Chem Chem Phys; 2011 May; 13(19):8889-93. PubMed ID: 21455525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ab initio study on the hydrogen desorption from MH-NH3 (M = Li, Na, K) hydrogen storage systems.
    Yamane A; Shimojo F; Hoshino K; Ichikawa T; Kojima Y
    J Chem Phys; 2011 Mar; 134(12):124515. PubMed ID: 21456684
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amminelithium amidoborane Li(NH3)NH2BH3: a new coordination compound with favorable dehydrogenation characteristics.
    Xia G; Yu X; Guo Y; Wu Z; Yang C; Liu H; Dou S
    Chemistry; 2010 Mar; 16(12):3763-9. PubMed ID: 20157906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. First-principles study of hydrogen storage on Li12C60.
    Sun Q; Jena P; Wang Q; Marquez M
    J Am Chem Soc; 2006 Aug; 128(30):9741-5. PubMed ID: 16866529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting impurity gases and phases during hydrogen evolution from complex metal hydrides using free energy minimization enabled by first-principles calculations.
    Kim KC; Allendorf MD; Stavila V; Sholl DS
    Phys Chem Chem Phys; 2010 Sep; 12(33):9918-26. PubMed ID: 20532325
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intrinsic defects and dopants in LiNH2: a first-principles study.
    Hazrati E; Brocks G; Buurman B; de Groot RA; de Wijs GA
    Phys Chem Chem Phys; 2011 Apr; 13(13):6043-52. PubMed ID: 21344077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Li+ ionic conductivities and diffusion mechanisms in Li-based imides and lithium amide.
    Li W; Wu G; Xiong Z; Feng YP; Chen P
    Phys Chem Chem Phys; 2012 Feb; 14(5):1596-606. PubMed ID: 22173712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stepwise phase transition in the formation of lithium amidoborane.
    Wu C; Wu G; Xiong Z; David WI; Ryan KR; Jones MO; Edwards PP; Chu H; Chen P
    Inorg Chem; 2010 May; 49(9):4319-23. PubMed ID: 20353150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. C60-mediated hydrogen desorption in Li-N-H systems.
    Qian Z; Li S; Pathak B; Araújo CM; Ahuja R; Jena P
    Nanotechnology; 2012 Dec; 23(48):485406. PubMed ID: 23138595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dehydrogenation mechanisms and thermodynamics of MNH2BH3 (M=Li, Na) metal amidoboranes as predicted from first principles.
    Shevlin SA; Kerkeni B; Guo ZX
    Phys Chem Chem Phys; 2011 May; 13(17):7649-59. PubMed ID: 21336360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogen storage of metal nitride by a mechanochemical reaction.
    Kojima Y; Kawai Y
    Chem Commun (Camb); 2004 Oct; (19):2210-1. PubMed ID: 15467876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. alpha- and beta-FOX-7, polymorphs of a high energy density material, studied by X-ray single crystal and powder investigations in the temperature range from 200 to 423 K.
    Evers J; Klapötke TM; Mayer P; Oehlinger G; Welch J
    Inorg Chem; 2006 Jun; 45(13):4996-5007. PubMed ID: 16780321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Na[Li(NH2BH3)2]--the first mixed-cation amidoborane with unusual crystal structure.
    Fijalkowski KJ; Genova RV; Filinchuk Y; Budzianowski A; Derzsi M; Jaroń T; Leszczyński PJ; Grochala W
    Dalton Trans; 2011 May; 40(17):4407-13. PubMed ID: 21409199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new Li-Al-N-H system for reversible hydrogen storage.
    Lu J; Fang ZZ; Sohn HY
    J Phys Chem B; 2006 Jul; 110(29):14236-9. PubMed ID: 16854126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discovery of novel hydrogen storage materials: an atomic scale computational approach.
    Wolverton C; Siegel DJ; Akbarzadeh AR; Ozoliņš V
    J Phys Condens Matter; 2008 Feb; 20(6):064228. PubMed ID: 21693890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Li(12)Si(60)H(60) fullerene composite: a promising hydrogen storage medium.
    Lan J; Cao D; Wang W
    ACS Nano; 2009 Oct; 3(10):3294-300. PubMed ID: 19761195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogen absorption and desorption by the Li-Al-N-H system.
    Kojima Y; Matsumoto M; Kawai Y; Haga T; Ohba N; Miwa K; Towata S; Nakamori Y; Orimo S
    J Phys Chem B; 2006 May; 110(19):9632-6. PubMed ID: 16686512
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large-scale screening of metal hydrides for hydrogen storage from first-principles calculations based on equilibrium reaction thermodynamics.
    Kim KC; Kulkarni AD; Johnson JK; Sholl DS
    Phys Chem Chem Phys; 2011 Apr; 13(15):7218-29. PubMed ID: 21409194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.