BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1456 related articles for article (PubMed ID: 16599493)

  • 1. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine.
    Jain PK; Lee KS; El-Sayed IH; El-Sayed MA
    J Phys Chem B; 2006 Apr; 110(14):7238-48. PubMed ID: 16599493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetic-plasmonic nanoparticles for the life sciences: calculated optical properties of hybrid structures.
    Brullot W; Valev VK; Verbiest T
    Nanomedicine; 2012 Jul; 8(5):559-68. PubMed ID: 21945901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoparticle-mediated photothermal therapy: a comparative study of heating for different particle types.
    Pattani VP; Tunnell JW
    Lasers Surg Med; 2012 Oct; 44(8):675-84. PubMed ID: 22933382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical absorption analysis and optimization of gold nanoshells.
    Tuersun P; Han X
    Appl Opt; 2013 Feb; 52(6):1325-9. PubMed ID: 23435006
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmonic photothermal therapy (PPTT) using gold nanoparticles.
    Huang X; Jain PK; El-Sayed IH; El-Sayed MA
    Lasers Med Sci; 2008 Jul; 23(3):217-28. PubMed ID: 17674122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model.
    Jain PK; Eustis S; El-Sayed MA
    J Phys Chem B; 2006 Sep; 110(37):18243-53. PubMed ID: 16970442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoshell-enabled photonics-based imaging and therapy of cancer.
    Loo C; Lin A; Hirsch L; Lee MH; Barton J; Halas N; West J; Drezek R
    Technol Cancer Res Treat; 2004 Feb; 3(1):33-40. PubMed ID: 14750891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2005 Nov; 109(43):20331-8. PubMed ID: 16853630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable near-infrared optical properties of three-layered metal nanoshells.
    Wu D; Xu X; Liu X
    J Chem Phys; 2008 Aug; 129(7):074711. PubMed ID: 19044796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tailoring longitudinal surface plasmon wavelengths, scattering and absorption cross sections of gold nanorods.
    Ni W; Kou X; Yang Z; Wang J
    ACS Nano; 2008 Apr; 2(4):677-86. PubMed ID: 19206598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Limitations on the optical tunability of small diameter gold nanoshells.
    Rasch MR; Sokolov KV; Korgel BA
    Langmuir; 2009 Oct; 25(19):11777-85. PubMed ID: 19711913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resonant Rayleigh light scattering of single Au nanoparticles with different sizes and shapes.
    Truong PL; Ma X; Sim SJ
    Nanoscale; 2014 Feb; 6(4):2307-15. PubMed ID: 24413584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced photoabsorption efficiency of incomplete nanoshells.
    Venkatapathi M; Dastidar SG; Bharath P; Roy A; Ghosh A
    Opt Lett; 2013 Sep; 38(17):3275-8. PubMed ID: 23988933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optically tunable nanoparticle contrast agents for early cancer detection: model-based analysis of gold nanoshells.
    Lin AW; Lewinski NA; West JL; Halas NJ; Drezek RA
    J Biomed Opt; 2005; 10(6):064035. PubMed ID: 16409100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gold nanoshells on polystyrene cores for control of surface plasmon resonance.
    Shi W; Sahoo Y; Swihart MT; Prasad PN
    Langmuir; 2005 Feb; 21(4):1610-7. PubMed ID: 15697315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical properties of gold-silica-gold multilayer nanoshells.
    Hu Y; Fleming RC; Drezek RA
    Opt Express; 2008 Nov; 16(24):19579-91. PubMed ID: 19030045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoshell-enabled photothermal cancer therapy: impending clinical impact.
    Lal S; Clare SE; Halas NJ
    Acc Chem Res; 2008 Dec; 41(12):1842-51. PubMed ID: 19053240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shape-dependent surface-enhanced Raman scattering in gold-Raman probe-silica sandwiched nanoparticles for biocompatible applications.
    Li M; Cushing SK; Zhang J; Lankford J; Aguilar ZP; Ma D; Wu N
    Nanotechnology; 2012 Mar; 23(11):115501. PubMed ID: 22383452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 73.