These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
44. Use of fluorescence signals generated by elastic scattering under monochromatic incident light for determining the scattering efficiencies of various plasmonic nanoparticles. Song JE; Park JH; La JA; Park S; Jeong MK; Cho EC Analyst; 2016 Aug; 141(15):4632-9. PubMed ID: 27215291 [TBL] [Abstract][Full Text] [Related]
45. Single-particle absorption spectroscopy by photothermal contrast. Yorulmaz M; Nizzero S; Hoggard A; Wang LY; Cai YY; Su MN; Chang WS; Link S Nano Lett; 2015 May; 15(5):3041-7. PubMed ID: 25849105 [TBL] [Abstract][Full Text] [Related]
46. Quantification of laser local hyperthermia induced by gold plasmonic nanoparticles. Yakunin AN; Avetisyan YA; Tuchin VV J Biomed Opt; 2015 May; 20(5):051030. PubMed ID: 25629389 [TBL] [Abstract][Full Text] [Related]
47. Can the light scattering depolarization ratio of small particles be greater than 1/3? Khlebtsov NG; Melnikov AG; Bogatyrev VA; Dykman LA; Alekseeva AV; Trachuk LA; Khlebtsov BN J Phys Chem B; 2005 Jul; 109(28):13578-84. PubMed ID: 16852700 [TBL] [Abstract][Full Text] [Related]
48. An optimal architecture of magneto-plasmonic core-shell nanoparticles for potential photothermal applications. Hadilou N; Souri S; Navid HA; Sadighi Bonabi R; Anvari A; Palpant B Phys Chem Chem Phys; 2020 Jul; 22(25):14318-14328. PubMed ID: 32567612 [TBL] [Abstract][Full Text] [Related]
49. Size tunable gold nanorods evenly distributed in the channels of mesoporous silica. Li Z; Kübel C; Pârvulescu VI; Richards R ACS Nano; 2008 Jun; 2(6):1205-12. PubMed ID: 19206338 [TBL] [Abstract][Full Text] [Related]
50. Scalable routes to gold nanoshells with tunable sizes and response to near-infrared pulsed-laser irradiation. Prevo BG; Esakoff SA; Mikhailovsky A; Zasadzinski JA Small; 2008 Aug; 4(8):1183-95. PubMed ID: 18623295 [TBL] [Abstract][Full Text] [Related]
51. Photothermal conversion of gold nanoparticles for uniform pulsed laser warming of vitrified biomaterials. Liu Y; Kangas J; Wang Y; Khosla K; Pasek-Allen J; Saunders A; Oldenburg S; Bischof J Nanoscale; 2020 Jun; 12(23):12346-12356. PubMed ID: 32490463 [TBL] [Abstract][Full Text] [Related]
52. Computer modeling of the optical properties and heating of spherical gold and silica-gold nanoparticles for laser combined imaging and photothermal treatment. Pustovalov V; Astafyeva L; Jean B Nanotechnology; 2009 Jun; 20(22):225105. PubMed ID: 19433875 [TBL] [Abstract][Full Text] [Related]
53. Improved synthesis of gold and silver nanoshells. Brito-Silva AM; Sobral-Filho RG; Barbosa-Silva R; de Araújo CB; Galembeck A; Brolo AG Langmuir; 2013 Apr; 29(13):4366-72. PubMed ID: 23472978 [TBL] [Abstract][Full Text] [Related]
54. The potential use of the enhanced nonlinear properties of gold nanospheres in photothermal cancer therapy. Huang X; Qian W; El-Sayed IH; El-Sayed MA Lasers Surg Med; 2007 Oct; 39(9):747-53. PubMed ID: 17960762 [TBL] [Abstract][Full Text] [Related]
55. Optimization of second harmonic generation of gold nanospheres and nanorods in aqueous solution: the dominant role of surface area. Ngo HM; Nguyen PP; Ledoux-Rak I Phys Chem Chem Phys; 2016 Jan; 18(4):3352-6. PubMed ID: 26751609 [TBL] [Abstract][Full Text] [Related]
56. Synthesis of Absorption-Dominant Small Gold Nanorods and Their Plasmonic Properties. Jia H; Fang C; Zhu XM; Ruan Q; Wang YX; Wang J Langmuir; 2015 Jul; 31(26):7418-26. PubMed ID: 26079391 [TBL] [Abstract][Full Text] [Related]
57. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. Huang X; El-Sayed IH; Qian W; El-Sayed MA J Am Chem Soc; 2006 Feb; 128(6):2115-20. PubMed ID: 16464114 [TBL] [Abstract][Full Text] [Related]
58. Two-dimensional angularly selective optical properties of gold nanoshell with holes. Qian J; Chen Z; Chen J; Li Y; Xu J; Sun Q Opt Express; 2012 Jun; 20(13):14614-20. PubMed ID: 22714523 [TBL] [Abstract][Full Text] [Related]