These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
64. Exploiting gold nanoparticles for diagnosis and cancer treatments. D'Acunto M; Cioni P; Gabellieri E; Presciuttini G Nanotechnology; 2021 May; 32(19):192001. PubMed ID: 33524960 [TBL] [Abstract][Full Text] [Related]
65. Calculation extinction cross sections and molar attenuation coefficient of small gold nanoparticles and experimental observation of their UV-vis spectral properties. Tang J; Gao K; Ou Q; Fu X; Man SQ; Guo J; Liu Y Spectrochim Acta A Mol Biomol Spectrosc; 2018 Feb; 191():513-520. PubMed ID: 29091910 [TBL] [Abstract][Full Text] [Related]
66. Universal scaling of plasmon coupling in metal nanostructures: extension from particle pairs to nanoshells. Jain PK; El-Sayed MA Nano Lett; 2007 Sep; 7(9):2854-8. PubMed ID: 17676810 [TBL] [Abstract][Full Text] [Related]
67. Quantitative comparison of optimized nanorods, nanoshells and hollow nanospheres for photothermal therapy. Kessentini S; Barchiesi D Biomed Opt Express; 2012 Mar; 3(3):590-604. PubMed ID: 22435104 [TBL] [Abstract][Full Text] [Related]
68. Synthesis and optical properties of small Au nanorods using a seedless growth technique. Ali MR; Snyder B; El-Sayed MA Langmuir; 2012 Jun; 28(25):9807-15. PubMed ID: 22620850 [TBL] [Abstract][Full Text] [Related]
69. Far- and near-field properties of gold nanoshells studied by photoacoustic and surface-enhanced Raman spectroscopies. Weber V; Feis A; Gellini C; Pilot R; Salvi PR; Signorini R Phys Chem Chem Phys; 2015 Sep; 17(33):21190-7. PubMed ID: 25559555 [TBL] [Abstract][Full Text] [Related]
70. Transition metal dichalcogenide coated gold nanoshells for highly effective photothermal therapy. Bagheri S; Farokhnezhad M; Esmaeilzadeh M Phys Chem Chem Phys; 2023 Dec; 25(48):33038-33047. PubMed ID: 38037391 [TBL] [Abstract][Full Text] [Related]
71. Mapping the plasmon resonances of metallic nanoantennas. Bryant GW; GarcĂa de Abajo FJ; Aizpurua J Nano Lett; 2008 Feb; 8(2):631-6. PubMed ID: 18189444 [TBL] [Abstract][Full Text] [Related]
72. Gold nanoparticle localization at the core surface by using thermosensitive core-shell particles as a template. Suzuki D; Kawaguchi H Langmuir; 2005 Dec; 21(25):12016-24. PubMed ID: 16316147 [TBL] [Abstract][Full Text] [Related]
73. Single nanoparticle based optical pH probe. Jensen RA; Sherin J; Emory SR Appl Spectrosc; 2007 Aug; 61(8):832-8. PubMed ID: 17716401 [TBL] [Abstract][Full Text] [Related]
74. Radiative and nonradiative properties of single plasmonic nanoparticles and their assemblies. Chang WS; Willingham B; Slaughter LS; Dominguez-Medina S; Swanglap P; Link S Acc Chem Res; 2012 Nov; 45(11):1936-45. PubMed ID: 22512668 [TBL] [Abstract][Full Text] [Related]
75. [Optical Analysis of the Interaction of Mercaptan Derivatives of Nanogold Particles with Carcinoembryonic Antigen]. Zeng HJ; Zhao RL; Wang DS; Li CX; Liu YY Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Feb; 36(2):478-81. PubMed ID: 27209753 [TBL] [Abstract][Full Text] [Related]
76. Gold nanostructures: engineering their plasmonic properties for biomedical applications. Hu M; Chen J; Li ZY; Au L; Hartland GV; Li X; Marquez M; Xia Y Chem Soc Rev; 2006 Nov; 35(11):1084-94. PubMed ID: 17057837 [TBL] [Abstract][Full Text] [Related]
77. Surface scattering contribution to the plasmon width in embedded Ag nanospheres. Monreal RC; Apell SP; Antosiewicz TJ Opt Express; 2014 Oct; 22(21):24994-5004. PubMed ID: 25401533 [TBL] [Abstract][Full Text] [Related]
78. Symmetry breaking in gold-silica-gold multilayer nanoshells. Hu Y; Noelck SJ; Drezek RA ACS Nano; 2010 Mar; 4(3):1521-8. PubMed ID: 20146507 [TBL] [Abstract][Full Text] [Related]
79. Ultrasmall hollow gold-silver nanoshells with extinctions strongly red-shifted to the near-infrared. Vongsavat V; Vittur BM; Bryan WW; Kim JH; Lee TR ACS Appl Mater Interfaces; 2011 Sep; 3(9):3616-24. PubMed ID: 21761855 [TBL] [Abstract][Full Text] [Related]