These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 16599564)

  • 1. Sterilizing filtration of plasmid DNA: effects of plasmid concentration, molecular weight, and conformation.
    Watson MP; Winters MA; Sagar SL; Konz JO
    Biotechnol Prog; 2006; 22(2):465-70. PubMed ID: 16599564
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Purification of large plasmids with methacrylate monolithic columns.
    Krajnc NL; Smrekar F; Cerne J; Raspor P; Modic M; Krgovic D; Strancar A; Podgornik A
    J Sep Sci; 2009 Aug; 32(15-16):2682-90. PubMed ID: 19598166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimizing alkaline lysis for DNA plasmid recovery.
    Clemson M; Kelly WJ
    Biotechnol Appl Biochem; 2003 Jun; 37(Pt 3):235-44. PubMed ID: 12611593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purification of plasmid DNA by an integrated operation comprising tangential flow filtration and nitrocellulose adsorption.
    Kendall D; Lye GJ; Levy MS
    Biotechnol Bioeng; 2002 Sep; 79(7):816-22. PubMed ID: 12209804
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Size exclusion chromatography of plasmid DNA isoforms.
    Latulippe DR; Zydney AL
    J Chromatogr A; 2009 Aug; 1216(35):6295-302. PubMed ID: 19635618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large-scale, nonchromatographic purification of plasmid DNA.
    Murphy JC; Winters MA; Sagar SL
    Methods Mol Med; 2006; 127():351-62. PubMed ID: 16988465
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of engineering flow conditions on plasmid DNA yield and purity in chemical cell lysis operations.
    Meacle FJ; Lander R; Ayazi Shamlou P; Titchener-Hooker NJ
    Biotechnol Bioeng; 2004 Aug; 87(3):293-302. PubMed ID: 15281104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proposal for a better integration of bacterial lysis into the production of plasmid DNA at large scale.
    O'Mahony K; Freitag R; Hilbrig F; Müller P; Schumacher I
    J Biotechnol; 2005 Sep; 119(2):118-32. PubMed ID: 15993505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmid DNA purification.
    Stadler J; Lemmens R; Nyhammar T
    J Gene Med; 2004 Feb; 6 Suppl 1():S54-66. PubMed ID: 14978751
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large-scale plasmid DNA processing: evidence that cell harvesting and storage methods affect yield of supercoiled plasmid DNA.
    Kong S; Rock CF; Booth A; Willoughby N; O'Kennedy RD; Relton J; Ward JM; Hoare M; Levy MS
    Biotechnol Appl Biochem; 2008 Sep; 51(Pt 1):43-51. PubMed ID: 18315524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Separation of different physical forms of plasmid DNA using a combination of low electric field strength and flow in porous media: effect of different field gradients and porosity of the media.
    Cole KD; Tellez CM; Blakesley RW
    Electrophoresis; 2000 Mar; 21(5):1010-7. PubMed ID: 10768788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of process flow sheets for the purification of supercoiled plasmids for gene therapy applications.
    Ferreira GN; Cabral JM; Prazeres DM
    Biotechnol Prog; 1999; 15(4):725-31. PubMed ID: 10441364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of different buffers on plasmid DNA encapsulation into PLGA microparticles.
    Tse MT; Blatchford C; Oya Alpar H
    Int J Pharm; 2009 Mar; 370(1-2):33-40. PubMed ID: 19059325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of intrinsic DNA structure on processing of plasmids for gene therapy and DNA vaccines.
    Cooke JR; McKie EA; Ward JM; Keshavarz-Moore E
    J Biotechnol; 2004 Nov; 114(3):239-54. PubMed ID: 15522434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Micron-pore-sized metallic filter tube membranes for filtration of particulates and water purification.
    Phelps TJ; Palumbo AV; Bischoff BL; Miller CJ; Fagan LA; McNeilly MS; Judkins RR
    J Microbiol Methods; 2008 Jul; 74(1):10-6. PubMed ID: 17884208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A continuous process to extract plasmid DNA based on alkaline lysis.
    Li X; Jin H; Wu Z; Rayner S; Wang B
    Nat Protoc; 2008; 3(2):176-80. PubMed ID: 18274518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thiophilic interaction chromatography for supercoiled plasmid DNA purification.
    Sandberg LM; Bjurling A; Busson P; Vasi J; Lemmens R
    J Biotechnol; 2004 Apr; 109(1-2):193-9. PubMed ID: 15063627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integration of bacteria capture via filtration and in situ lysis for recovery of plasmid DNA under industry-compatible conditions.
    O'Mahony K; Freitag R; Hilbrig F; Schumacher I; Müller P
    Biotechnol Prog; 2007; 23(4):895-903. PubMed ID: 17628077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of clinical-grade plasmid DNA for human Phase I clinical trials and large animal clinical studies.
    Przybylowski M; Bartido S; Borquez-Ojeda O; Sadelain M; Rivière I
    Vaccine; 2007 Jun; 25(27):5013-24. PubMed ID: 17537555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The suitability of DEAE-Cl active groups on customized poly(GMA-co-EDMA) continuous stationary phase for fast enzyme-free isolation of plasmid DNA.
    Danquah MK; Forde GM
    J Chromatogr B Analyt Technol Biomed Life Sci; 2007 Jun; 853(1-2):38-46. PubMed ID: 17400523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.