These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 16599565)

  • 1. Capture of bacteria from fermentation broth by body feed filtration: a solved problem?
    O'Mahony K; Freitag R; Dhote B; Hilbrig F; Müller P; Schumacher I
    Biotechnol Prog; 2006; 22(2):471-83. PubMed ID: 16599565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integration of bacteria capture via filtration and in situ lysis for recovery of plasmid DNA under industry-compatible conditions.
    O'Mahony K; Freitag R; Hilbrig F; Schumacher I; Müller P
    Biotechnol Prog; 2007; 23(4):895-903. PubMed ID: 17628077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative testing of tangential microfiltration for microbial cultures.
    Naja G; Volesky B; Schnell A
    Biotechnol Bioeng; 2006 Nov; 95(4):584-98. PubMed ID: 16958140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proposal for a better integration of bacterial lysis into the production of plasmid DNA at large scale.
    O'Mahony K; Freitag R; Hilbrig F; Müller P; Schumacher I
    J Biotechnol; 2005 Sep; 119(2):118-32. PubMed ID: 15993505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vibrating membrane filtration for recovery and concentration of insect killing nematodes.
    Wilson JA; Postlethwaite J; Pearce JD; Leach G; Lye GJ; Shamlou PA
    Biotechnol Bioeng; 2003 Jul; 83(2):235-40. PubMed ID: 12768629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellulosic hydrogen production with a sequencing bacterial hydrolysis and dark fermentation strategy.
    Lo YC; Bai MD; Chen WM; Chang JS
    Bioresour Technol; 2008 Nov; 99(17):8299-303. PubMed ID: 18417341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reductions of E. coli, echovirus type 12 and bacteriophages in an intermittently operated household-scale slow sand filter.
    Elliott MA; Stauber CE; Koksal F; DiGiano FA; Sobsey MD
    Water Res; 2008 May; 42(10-11):2662-70. PubMed ID: 18281076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An automated home-built low-cost fermenter suitable for large-scale bacterial expression of proteins in Escherichia coli.
    Riek U; Tuerk R; Wallimann T; Schlattner U; Neumann D
    Biotechniques; 2008 Aug; 45(2):187-9. PubMed ID: 18687068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantification of power consumption and oxygen transfer characteristics of a stirred miniature bioreactor for predictive fermentation scale-up.
    Gill NK; Appleton M; Baganz F; Lye GJ
    Biotechnol Bioeng; 2008 Aug; 100(6):1144-55. PubMed ID: 18404769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water activity of bacterial suspension media unable to account for the baroprotective effect of solute concentration on the inactivation of Listeria monocytogenes by high hydrostatic pressure.
    Koseki S; Yamamoto K
    Int J Food Microbiol; 2007 Apr; 115(1):43-7. PubMed ID: 17196694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Online recovery of nisin during fermentation and its effect on nisin production in biofilm reactor.
    Pongtharangku T; Demirci A
    Appl Microbiol Biotechnol; 2007 Mar; 74(3):555-62. PubMed ID: 17111139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pilot-scale fermentation of aqueous-ammonia-soaked switchgrass.
    Isci A; Himmelsbach JN; Strohl J; Pometto AL; Raman DR; Anex RP
    Appl Biochem Biotechnol; 2009 Jun; 157(3):453-62. PubMed ID: 18716923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of different options for harvest of a therapeutic protein product from high cell density yeast fermentation broth.
    Wang A; Lewus R; Rathore AS
    Biotechnol Bioeng; 2006 May; 94(1):91-104. PubMed ID: 16440354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic membrane-filtration system for the "on-demand" supply of large volumes of sterile medium in continuous culture.
    Larsen VF; Spivey M; Holdom RS
    Biotechnol Bioeng; 1976 Oct; 18(10):1433-43. PubMed ID: 963281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A methodological approach to scaling up fermentation and primary recovery processes to the manufacturing scale for vaccine production.
    Lee TS
    Vaccine; 2009 Oct; 27(46):6439-43. PubMed ID: 19577635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inactivation of Escherichia coli, Listeria monocytogenes and Yersinia enterocolitica in fermented sausages during maturation/storage.
    Lindqvist R; Lindblad M
    Int J Food Microbiol; 2009 Jan; 129(1):59-67. PubMed ID: 19064299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of the magnitude of the decrease of rumen pH on rumen fermentation in a dual-flow continuous culture system.
    Cerrato-Sánchez M; Calsamiglia S; Ferret A
    J Anim Sci; 2008 Feb; 86(2):378-83. PubMed ID: 17998434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of initial cellulose concentration on the carbon flow distribution during batch fermentation by Clostridium thermocellum ATCC 27405.
    Islam R; Cicek N; Sparling R; Levin D
    Appl Microbiol Biotechnol; 2009 Feb; 82(1):141-8. PubMed ID: 18998122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of clinical-grade plasmid DNA for human Phase I clinical trials and large animal clinical studies.
    Przybylowski M; Bartido S; Borquez-Ojeda O; Sadelain M; Rivière I
    Vaccine; 2007 Jun; 25(27):5013-24. PubMed ID: 17537555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Virus filtration of high-concentration monoclonal antibody solutions.
    Marques BF; Roush DJ; Göklen KE
    Biotechnol Prog; 2009; 25(2):483-91. PubMed ID: 19353736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.