These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 16599575)

  • 1. Cost-effective recovery and purification of polyhydroxyalkanoates by selective dissolution of cell mass.
    Yu J; Chen LX
    Biotechnol Prog; 2006; 22(2):547-53. PubMed ID: 16599575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved detergent-based recovery of polyhydroxyalkanoates (PHAs).
    Yang YH; Brigham C; Willis L; Rha C; Sinskey A
    Biotechnol Lett; 2011 May; 33(5):937-42. PubMed ID: 21207109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzymatic recovery and purification of polyhydroxybutyrate produced by Ralstonia eutropha.
    Kapritchkoff FM; Viotti AP; Alli RC; Zuccolo M; Pradella JG; Maiorano AE; Miranda EA; Bonomi A
    J Biotechnol; 2006 Apr; 122(4):453-62. PubMed ID: 16253372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recovery and purification of intracellular polyhydroxyalkanoates from recombinant Cupriavidus necator using water and ethanol.
    Mohammadi M; Hassan MA; Phang LY; Ariffin H; Shirai Y; Ando Y
    Biotechnol Lett; 2012 Feb; 34(2):253-9. PubMed ID: 22038551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Physicochemical properties of multicomponent polyhydroxyalkanoates].
    Volova TG; Mironov PV; Vasil'ev AD
    Biofizika; 2007; 52(3):460-5. PubMed ID: 17633534
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monitoring the in situ crystallization of native biopolyester granules in Ralstonia eutropha via infrared spectroscopy.
    Porter M; Yu J
    J Microbiol Methods; 2011 Oct; 87(1):49-55. PubMed ID: 21801758
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cloud-point extraction of green-polymers from Cupriavidus necator lysate using thermoseparating-based aqueous two-phase extraction.
    Leong YK; Lan JC; Loh HS; Ling TC; Ooi CW; Show PL
    J Biosci Bioeng; 2017 Mar; 123(3):370-375. PubMed ID: 27745851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effective recovery of poly-β-hydroxybutyrate (PHB) biopolymer from Cupriavidus necator using a novel and environmentally friendly solvent system.
    Fei T; Cazeneuve S; Wen Z; Wu L; Wang T
    Biotechnol Prog; 2016 May; 32(3):678-85. PubMed ID: 26871655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial utilization and biopolyester synthesis of bagasse hydrolysates.
    Yu J; Stahl H
    Bioresour Technol; 2008 Nov; 99(17):8042-8. PubMed ID: 18474421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biotransformation of starch-based wastewater into bioplastics: Optimization of poly(3-hydroxybutyrate) production by Cupriavidus necator DSM 545 using potato wastewater hydrolysate.
    González-Rojo S; Paniagua-García AI; Díez-Antolínez R
    Water Res; 2023 Dec; 247():120766. PubMed ID: 37897996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial polythioesters.
    Lütke-Eversloh T; Steinbüchel A
    Macromol Biosci; 2004 Mar; 4(3):166-74. PubMed ID: 15468206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of thermo-separating aqueous two-phase system in extractive bioconversion of polyhydroxyalkanoates by Cupriavidus necator H16.
    Leong YK; Show PL; Lan JC; Krishnamoorthy R; Chu DT; Nagarajan D; Yen HW; Chang JS
    Bioresour Technol; 2019 Sep; 287():121474. PubMed ID: 31122870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An efficient method for the application of PHA-poor solvents to extract polyhydroxybutyrate from Cupriavidus necator.
    Aramvash A; Gholami-Banadkuki N; Seyedkarimi MS
    Biotechnol Prog; 2016 Nov; 32(6):1480-1486. PubMed ID: 27557151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Fatty acid composition of Wautersia eutropha lipids under conditions of active polyhydroxyalkanoates synthesis].
    Kalacheva GS; Volova TG
    Mikrobiologiia; 2007; 76(5):608-14. PubMed ID: 18069320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Environmentally Friendly and Efficient Method for Extraction of PHB Biopolymer with Non-Halogenated Solvents.
    Aramvash A; Gholami-Banadkuki N; Moazzeni-Zavareh F; Hajizadeh-Turchi S
    J Microbiol Biotechnol; 2015 Nov; 25(11):1936-43. PubMed ID: 26198125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recovery of amorphous polyhydroxybutyrate granules from Cupriavidus necator cells grown on used cooking oil.
    Martino L; Cruz MV; Scoma A; Freitas F; Bertin L; Scandola M; Reis MA
    Int J Biol Macromol; 2014 Nov; 71():117-23. PubMed ID: 24751509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new biological recovery approach for PHA using mealworm, Tenebrio molitor.
    Murugan P; Han L; Gan CY; Maurer FH; Sudesh K
    J Biotechnol; 2016 Dec; 239():98-105. PubMed ID: 27746304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dispersion optimization to enhance PHB production in fed-batch cultures of Ralstonia eutropha.
    Patnaik PR
    Bioresour Technol; 2006 Nov; 97(16):1994-2001. PubMed ID: 16289872
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel approach for productivity enhancement of polyhydroxyalkanoates (PHA) production by Cupriavidus necator DSM 545.
    Berezina N
    N Biotechnol; 2013 Jan; 30(2):192-5. PubMed ID: 22634022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ralstonia eutropha strain H16 as model organism for PHA metabolism and for biotechnological production of technically interesting biopolymers.
    Reinecke F; Steinbüchel A
    J Mol Microbiol Biotechnol; 2009; 16(1-2):91-108. PubMed ID: 18957865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.