BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 16599588)

  • 1. Carboxylate-based receptors for the recognition of carbohydrates in organic and aqueous media.
    Mazik M; Cavga H
    J Org Chem; 2006 Apr; 71(8):2957-63. PubMed ID: 16599588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly effective recognition of carbohydrates by phenanthroline-based receptors: alpha- versus beta-anomer binding preference.
    Mazik M; Hartmann A; Jones PG
    Chemistry; 2009 Sep; 15(36):9147-59. PubMed ID: 19650090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly effective acyclic carbohydrate receptors consisting of aminopyridine, imidazole, and indole recognition units.
    Mazik M; Kuschel M
    Chemistry; 2008; 14(8):2405-19. PubMed ID: 18205164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isopropylamino and isobutylamino groups as recognition sites for carbohydrates: acyclic receptors with enhanced binding affinity toward β-galactosides.
    Mazik M; Sonnenberg C
    J Org Chem; 2010 Oct; 75(19):6416-23. PubMed ID: 20828138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxime-based receptors for mono- and disaccharides.
    Mazik M; Buthe AC
    J Org Chem; 2007 Oct; 72(22):8319-26. PubMed ID: 17914843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular recognition of carbohydrates with artificial receptors: mimicking the binding motifs found in the crystal structures of protein-carbohydrate complexes.
    Mazik M; Cavga H; Jones PG
    J Am Chem Soc; 2005 Jun; 127(25):9045-52. PubMed ID: 15969582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recognition properties of an acyclic biphenyl-based receptor toward carbohydrates.
    Mazik M; König A
    J Org Chem; 2006 Sep; 71(20):7854-7. PubMed ID: 16995697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly effective receptors showing di- vs. monosaccharide preference.
    Mazik M; Buthe AC
    Org Biomol Chem; 2008 May; 6(9):1558-68. PubMed ID: 18421387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carboxylate coordination chemistry of a mononuclear Ni(II) center in a hydrophobic or hydrogen bond donor secondary environment: relevance to acireductone dioxygenase.
    Szajna-Fuller E; Chambers BM; Arif AM; Berreau LM
    Inorg Chem; 2007 Jul; 46(14):5486-98. PubMed ID: 17288413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crown ethers as building blocks for carbohydrate receptors.
    Mazik M; Kuschel M; Sicking W
    Org Lett; 2006 Mar; 8(5):855-8. PubMed ID: 16494458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anion binding versus intramolecular hydrogen bonding in neutral macrocyclic amides.
    Chmielewski MJ; Jurczak J
    Chemistry; 2006 Oct; 12(29):7652-67. PubMed ID: 16823784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High alpha/beta-anomer selectivity in molecular recognition of carbohydrates by artificial receptors.
    Mazik M; Radunz W; Sicking W
    Org Lett; 2002 Dec; 4(26):4579-82. PubMed ID: 12489934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular recognition of N-acetylneuraminic acid by acyclic pyridinium- and quinolinium-based receptors in aqueous media: recognition through combination of cationic and neutral recognition sites.
    Geffert C; Kuschel M; Mazik M
    J Org Chem; 2013 Jan; 78(2):292-300. PubMed ID: 23270379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carboxylate complexation by 1,1'-(1,2-phenylene)bis(3-phenylurea) in solution and the solid state.
    Brooks SJ; Gale PA; Light ME
    Chem Commun (Camb); 2005 Oct; (37):4696-8. PubMed ID: 16175296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular recognition of carbohydrates with acyclic pyridine-based receptors.
    Mazik M; Radunz W; Boese R
    J Org Chem; 2004 Oct; 69(22):7448-62. PubMed ID: 15497969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organic crystal engineering with 1,4-piperazine-2,5-diones. 6. Studies of the hydrogen-bond association of cyclo[(2-methylamino-4,7-dimethoxyindan-2-carboxylic acid)(2-amino-4,7-dimethoxyindan-2-carboxylic acid)].
    Weatherhead-Kloster RA; Selby HD; Miller Iii WB; Mash EA
    J Org Chem; 2005 Oct; 70(22):8693-702. PubMed ID: 16238297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The synthesis and characterisation of Sn(IV) complexes of 2,6-pyridine dicarboxylate--the molecular structure of divinyltin(IV) derivative.
    Costa LC; de Lima GM; da S Maia JR; Filgueiras CA; Doriguetto AC; Ellena J
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Jun; 61(8):1971-5. PubMed ID: 15863074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 5-Acetyl-2-amino-6-methyl-4-(1-naphthyl)-4H-pyran-3-carbonitrile, methyl 6-amino-5-cyano-2-methyl-4-(1-naphthyl)-4H-pyran-3-carboxylate and tert-butyl 6-amino-5-cyano-2-methyl-4-(1-naphthyl)-4H-pyran-3-carboxylate.
    Nesterova SV; Wiedenfeld DJ; Nesterov VN
    Acta Crystallogr C; 2004 Aug; 60(Pt 8):o559-63. PubMed ID: 15295187
    [No Abstract]   [Full Text] [Related]  

  • 19. A simple helical macrocyclic polyazapyridinophane as a stereoselective receptor of biologically important dicarboxylates under physiological conditions.
    González-Alvarez A; Alfonso I; Díaz P; García-España E; Gotor-Fernández V; Gotor V
    J Org Chem; 2008 Jan; 73(2):374-82. PubMed ID: 18081344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water exchange on seven-coordinate Mn(II) complexes with macrocyclic pentadentate ligands: insight in the mechanism of Mn(II) SOD mimetics.
    Dees A; Zahl A; Puchta R; Hommes NJ; Heinemann FW; Ivanović-Burmazović I
    Inorg Chem; 2007 Apr; 46(7):2459-70. PubMed ID: 17326621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.