BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

483 related articles for article (PubMed ID: 16599711)

  • 1. Kinetic theory of binary nucleation based on a first passage time analysis.
    Djikaev Y; Ruckenstein E
    J Chem Phys; 2006 Mar; 124(12):124521. PubMed ID: 16599711
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent developments in the kinetic theory of nucleation.
    Ruckenstein E; Djikaev YS
    Adv Colloid Interface Sci; 2005 Dec; 118(1-3):51-72. PubMed ID: 16137628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic theory of nucleation based on a first passage time analysis: improvement by the density-functional theory.
    Djikaev YS; Ruckenstein E
    J Chem Phys; 2005 Dec; 123(21):214503. PubMed ID: 16356053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New approach to the kinetics of heterogeneous unary nucleation on liquid aerosols of a binary solution.
    Djikaev Y; Ruckenstein E
    J Chem Phys; 2006 Dec; 125(24):244707. PubMed ID: 17199368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel approach to the theory of homogeneous and heterogeneous nucleation.
    Ruckenstein E; Berim GO; Narsimhan G
    Adv Colloid Interface Sci; 2015 Jan; 215():13-27. PubMed ID: 25498347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the closure conjectures for the Gibbsian approximation model of a binary droplet.
    Djikaev YS; Napari I; Laaksonen A
    J Chem Phys; 2004 May; 120(20):9752-62. PubMed ID: 15267991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A kinetic approach to the theory of heterogeneous nucleation on soluble particles during the deliquescence stage.
    Djikaev YS; Ruckenstein E
    J Chem Phys; 2006 May; 124(19):194709. PubMed ID: 16729836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complete thermodynamically consistent kinetic model of particle nucleation and growth: numerical study of the applicability of the classical theory of homogeneous nucleation.
    Chesnokov EN; Krasnoperov LN
    J Chem Phys; 2007 Apr; 126(14):144504. PubMed ID: 17444720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mean-field kinetic nucleation theory.
    Kalikmanov VI
    J Chem Phys; 2006 Mar; 124(12):124505. PubMed ID: 16599695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quasi-unary homogeneous nucleation of H2SO4-H2O.
    Yu F
    J Chem Phys; 2005 Feb; 122(7):074501. PubMed ID: 15743248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A thermodynamically consistent kinetic framework for binary nucleation.
    Flagan RC
    J Chem Phys; 2007 Dec; 127(21):214503. PubMed ID: 18067360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gradient theory computation of the radius-dependent surface tension and nucleation rate for n-nonane clusters.
    Hrubý J; Labetski DG; van Dongen ME
    J Chem Phys; 2007 Oct; 127(16):164720. PubMed ID: 17979384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tests of the homogeneous nucleation theory with molecular-dynamics simulations. I. Lennard-Jones molecules.
    Tanaka KK; Kawamura K; Tanaka H; Nakazawa K
    J Chem Phys; 2005 May; 122(18):184514. PubMed ID: 15918736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature effects on the nucleation mechanism of protein folding and on the barrierless thermal denaturation of a native protein.
    Djikaev YS; Ruckenstein E
    Phys Chem Chem Phys; 2008 Nov; 10(41):6281-300. PubMed ID: 18936853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monte Carlo simulation study of droplet nucleation.
    Neimark AV; Vishnyakov A
    J Chem Phys; 2005 May; 122(17):174508. PubMed ID: 15910046
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison between the classical theory predictions and molecular simulation results for heterogeneous nucleation of argon.
    Lauri A; Zapadinsky E; Vehkamäki H; Kulmala M
    J Chem Phys; 2006 Oct; 125(16):164712. PubMed ID: 17092125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of line tension and contact angle from heterogeneous nucleation experimental data.
    Hienola AI; Winkler PM; Wagner PE; Vehkamäki H; Lauri A; Napari I; Kulmala M
    J Chem Phys; 2007 Mar; 126(9):094705. PubMed ID: 17362116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An aggregation-volume-bias Monte Carlo investigation on the condensation of a Lennard-Jones vapor below the triple point and crystal nucleation in cluster systems: an in-depth evaluation of the classical nucleation theory.
    Chen B; Kim H; Keasler SJ; Nellas RB
    J Phys Chem B; 2008 Apr; 112(13):4067-78. PubMed ID: 18335920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Model for the nucleation mechanism of protein folding.
    Djikaev YS; Ruckenstein E
    J Phys Chem B; 2007 Feb; 111(4):886-97. PubMed ID: 17249833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A thermodynamically consistent determination of surface tension of small Lennard-Jones clusters from simulation and theory.
    Julin J; Napari I; Merikanto J; Vehkamäki H
    J Chem Phys; 2010 Jul; 133(4):044704. PubMed ID: 20687673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.