BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 16599714)

  • 1. Quantum study of Eley-Rideal reaction and collision induced desorption of hydrogen atoms on a graphite surface. II. H-physisorbed case.
    Martinazzo R; Tantardini GF
    J Chem Phys; 2006 Mar; 124(12):124703. PubMed ID: 16599714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum study of Eley-Rideal reaction and collision induced desorption of hydrogen atoms on a graphite surface. I. H-chemisorbed case.
    Martinazzo R; Tantardini GF
    J Chem Phys; 2006 Mar; 124(12):124702. PubMed ID: 16599713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum dynamics of the Eley-Rideal hydrogen formation reaction on graphite at typical interstellar cloud conditions.
    Casolo S; Martinazzo R; Bonfanti M; Tantardini GF
    J Phys Chem A; 2009 Dec; 113(52):14545-53. PubMed ID: 19518057
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hot-atom versus Eley-Rideal dynamics in hydrogen recombination on Ni(100). I. The single-adsorbate case.
    Martinazzo R; Assoni S; Marinoni G; Tantardini GF
    J Chem Phys; 2004 May; 120(18):8761-71. PubMed ID: 15267808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum effects in an exoergic, barrierless reaction at high collision energies.
    Martinazzo R; Tantardini GF
    J Phys Chem A; 2005 Oct; 109(42):9379-83. PubMed ID: 16866384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quasiclassical study of Eley-Rideal and hot atom reactions of H atoms with Cl adsorbed on a Au(111) surface.
    Quattrucci JG; Jackson B
    J Chem Phys; 2005 Feb; 122(7):074705. PubMed ID: 15743263
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic Monte Carlo studies of hydrogen abstraction from graphite.
    Cuppen HM; Hornekaer L
    J Chem Phys; 2008 May; 128(17):174707. PubMed ID: 18465936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reactive ion surface scattering as an Eley-Rideal process: a molecular dynamics study into the abstraction reaction mechanism by low energy Cs+ from Pt(111).
    Lahaye RJ; Kang H
    Chemphyschem; 2004 May; 5(5):697-705. PubMed ID: 15179722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Classical studies of H atom trapping on a graphite surface.
    Kerwin J; Sha X; Jackson B
    J Phys Chem B; 2006 Sep; 110(38):18811-7. PubMed ID: 16986871
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unrestricted study of the Eley-Rideal formation of H(2) on graphene using a new multidimensional graphene-H-H potential: role of the substrate.
    Bachellerie D; Sizun M; Aguillon F; Teillet-Billy D; Rougeau N; Sidis V
    Phys Chem Chem Phys; 2009 Apr; 11(15):2715-29. PubMed ID: 19421530
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum dynamics of H2 formation on a graphite surface through the Langmuir Hinshelwood mechanism.
    Morisset S; Aguillon F; Sizun M; Sidis V
    J Chem Phys; 2004 Oct; 121(13):6493-501. PubMed ID: 15446950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. OH formation from O and H atoms physisorbed on a graphitic surface through the Langmuir-Hinshelwood mechanism: a quasi-classical approach.
    Bergeron H; Rougeau N; Sidis V; Sizun M; Teillet-Billy D; Aguillon F
    J Phys Chem A; 2008 Nov; 112(46):11921-30. PubMed ID: 18950145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Eley-Rideal recombination of hydrogen atoms on a tungsten surface.
    Rutigliano M; Cacciatore M
    Phys Chem Chem Phys; 2011 Apr; 13(16):7475-84. PubMed ID: 21431105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface models and reaction barrier in Eley-Rideal formation of H2 on graphitic surfaces.
    Bonfanti M; Casolo S; Tantardini GF; Martinazzo R
    Phys Chem Chem Phys; 2011 Oct; 13(37):16680-8. PubMed ID: 21858337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. State-to-state reaction probabilities for the H+O2(v,j)-->O+OH(v',j') reaction on three potential energy surfaces.
    Hankel M; Smith SC; Meijer AJ
    J Chem Phys; 2007 Aug; 127(6):064316. PubMed ID: 17705605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The sticking of H and D atoms on a graphite (0001) surface: the effects of coverage and energy dissipation.
    Kerwin J; Jackson B
    J Chem Phys; 2008 Feb; 128(8):084702. PubMed ID: 18315067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum dynamical investigation of the isotope effect in H2 formation on graphite at cold collision energies.
    Pasquini M; Bonfanti M; Martinazzo R
    Phys Chem Chem Phys; 2016 Mar; 18(9):6607-17. PubMed ID: 26868899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of energy transfer in collisions of O(3P) atoms with a 1-decanethiol self-assembled monolayer surface.
    Tasić US; Yan T; Hase WL
    J Phys Chem B; 2006 Jun; 110(24):11863-77. PubMed ID: 16800489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum studies of H atom trapping on a graphite surface.
    Sha X; Jackson B; Lemoine D; Lepetit B
    J Chem Phys; 2005 Jan; 122(1):14709. PubMed ID: 15638693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A density-functional-theory study of atomic nitrogen abstraction from Si(100)-(2 x 1) by a gaseous O(3P) atom.
    Herrera-Morales PE; Weaver JF
    J Chem Phys; 2005 Jun; 122(23):234705. PubMed ID: 16008471
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.