These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 16599762)

  • 1. Dispersion relation of the nonlinear Klein-Gordon equation through a variational method.
    Amore P; Raya A
    Chaos; 2006 Mar; 16(1):013131. PubMed ID: 16599762
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new approximate analytical approach for dispersion relation of the nonlinear Klein-Gordon equation.
    Lim CW; Wu BS; He LH
    Chaos; 2001 Dec; 11(4):843-848. PubMed ID: 12779523
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation instability and rogue waves for two and three dimensional nonlinear Klein-Gordon equation.
    Yang Z; Mu G; Qin Z
    Chaos; 2024 Sep; 34(9):. PubMed ID: 39312728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hamiltonian form of extended cubic-quintic nonlinear Schrödinger equation  in a nonlinear Klein-Gordon model.
    Sedletsky YV; Gandzha IS
    Phys Rev E; 2022 Dec; 106(6-1):064212. PubMed ID: 36671192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Renormalized waves and thermalization of the Klein-Gordon equation.
    Shirokoff D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046217. PubMed ID: 21599280
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exact analytical solutions for the variational equations derived from the nonlinear Schrödinger equation.
    Moubissi AB; Nakkeeran K; Abobaker AM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 2):026603. PubMed ID: 17930163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamical systems in the theory of solitons in the presence of nonlocal interactions.
    Alfimov GL; Eleonsky VM; Kulagin NE
    Chaos; 1992 Oct; 2(4):565-570. PubMed ID: 12780003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Klein-Gordon equation on a Lagrange mesh.
    Baye D
    Phys Rev E; 2024 Apr; 109(4-2):045303. PubMed ID: 38755927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Approximation scheme for master equations: Variational approach to multivariate case.
    Ohkubo J
    J Chem Phys; 2008 Jul; 129(4):044108. PubMed ID: 18681635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions among periodic waves and solitary waves of the (N + 1)-dimensional sine-Gordon field.
    Lou SY; Hu HC; Tang XY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2B):036604. PubMed ID: 15903602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analytical solution for the dynamics and optimization of fractional Klein-Gordon equation: an application to quantum particle.
    Abro KA; Siyal A; Atangana A; Al-Mdallal QM
    Opt Quantum Electron; 2023; 55(8):704. PubMed ID: 37324174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effective local potential method: implementation for molecules and relation to approximate optimized effective potential techniques.
    Izmaylov AF; Staroverov VN; Scuseria GE; Davidson ER; Stoltz G; Cancès E
    J Chem Phys; 2007 Feb; 126(8):084107. PubMed ID: 17343440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the relation between time-dependent and variational density functional theory approaches for the determination of excitation energies and transition moments.
    Ziegler T; Seth M; Krykunov M; Autschbach J; Wang F
    J Chem Phys; 2009 Apr; 130(15):154102. PubMed ID: 19388731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The acoustical Klein-Gordon equation: the wave-mechanical step and barrier potential functions.
    Forbes BJ; Pike ER; Sharp DB
    J Acoust Soc Am; 2003 Sep; 114(3):1291-302. PubMed ID: 14514182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kink topology control by high-frequency external forces in nonlinear Klein-Gordon models.
    Alvarez-Nodarse R; Quintero NR; Mertens FG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042916. PubMed ID: 25375576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of noise in quartz crystal oscillators by using slowly varying functions method.
    Brendel R; Ratier N; Couteleau L; Marianneau G; Guillemot P
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(2):356-65. PubMed ID: 18238432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laplace transform homotopy perturbation method for the approximation of variational problems.
    Filobello-Nino U; Vazquez-Leal H; Rashidi MM; Sedighi HM; Perez-Sesma A; Sandoval-Hernandez M; Sarmiento-Reyes A; Contreras-Hernandez AD; Pereyra-Diaz D; Hoyos-Reyes C; Jimenez-Fernandez VM; Huerta-Chua J; Castro-Gonzalez F; Laguna-Camacho JR
    Springerplus; 2016; 5():276. PubMed ID: 27006884
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Approximate analytical expressions for the electrical potential in a cavity containing salt-free medium.
    Tseng S; Wong NB; Liu PC; Hsu JP
    Langmuir; 2007 Oct; 23(21):10448-54. PubMed ID: 17854213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Full optimization of Jastrow-Slater wave functions with application to the first-row atoms and homonuclear diatomic molecules.
    Toulouse J; Umrigar CJ
    J Chem Phys; 2008 May; 128(17):174101. PubMed ID: 18465904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Homogeneous nucleation: classical formulas as asymptotic limits of the Cahn-Hilliard approach.
    Parra IE; Cordero-Gracia M; Gómez M
    J Chem Phys; 2007 Feb; 126(5):054512. PubMed ID: 17302490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.