These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 16599989)
41. Enhanced fermentative capacity of yeasts engineered in storage carbohydrate metabolism. Pérez-Torrado R; Matallana E Biotechnol Prog; 2015; 31(1):20-4. PubMed ID: 25219977 [TBL] [Abstract][Full Text] [Related]
42. Deletion of the ATH1 gene in Saccharomyces cerevisiae prevents growth on trehalose. Nwaka S; Mechler B; Holzer H FEBS Lett; 1996 May; 386(2-3):235-8. PubMed ID: 8647289 [TBL] [Abstract][Full Text] [Related]
43. A baker's yeast mutant (fil1) with a specific, partially inactivating mutation in adenylate cyclase maintains a high stress resistance during active fermentation and growth. Van Dijck P; Ma P; Versele M; Gorwa MF; Colombo S; Lemaire K; Bossi D; Loïez A; Thevelein JM J Mol Microbiol Biotechnol; 2000 Oct; 2(4):521-30. PubMed ID: 11075928 [TBL] [Abstract][Full Text] [Related]
44. Alcoholic fermentation of xylose and mixed sugars using recombinant Saccharomyces cerevisiae engineered for xylose utilization. Madhavan A; Tamalampudi S; Srivastava A; Fukuda H; Bisaria VS; Kondo A Appl Microbiol Biotechnol; 2009 Apr; 82(6):1037-47. PubMed ID: 19125247 [TBL] [Abstract][Full Text] [Related]
45. Aerobic induction of respiro-fermentative growth by decreasing oxygen tensions in the respiratory yeast Pichia stipitis. Klinner U; Fluthgraf S; Freese S; Passoth V Appl Microbiol Biotechnol; 2005 Apr; 67(2):247-53. PubMed ID: 15834719 [TBL] [Abstract][Full Text] [Related]
46. Expression of the Gxf1 transporter from Candida intermedia improves fermentation performance in recombinant xylose-utilizing Saccharomyces cerevisiae. Runquist D; Fonseca C; Rådström P; Spencer-Martins I; Hahn-Hägerdal B Appl Microbiol Biotechnol; 2009 Feb; 82(1):123-30. PubMed ID: 19002682 [TBL] [Abstract][Full Text] [Related]
47. Trehalase activity and its regulation during growth of Saccharomyces cerevisiae. Coutinho CC; Silva JT; Panek AD Biochem Int; 1992 Mar; 26(3):521-30. PubMed ID: 1627161 [TBL] [Abstract][Full Text] [Related]
48. Disruption of hexokinase II (HXK2) partly relieves glucose repression to enhance production of human kringle fragment in gratuitous recombinant Saccharomyces cerevisiae. Lee TH; Kim MD; Shin SY; Lim HK; Seo JH J Biotechnol; 2006 Dec; 126(4):562-7. PubMed ID: 16797763 [TBL] [Abstract][Full Text] [Related]
49. The Saccharomyces cerevisiae vacuolar acid trehalase is targeted at the cell surface for its physiological function. He S; Bystricky K; Leon S; François JM; Parrou JL FEBS J; 2009 Oct; 276(19):5432-46. PubMed ID: 19703229 [TBL] [Abstract][Full Text] [Related]
50. Synthesis, accumulation and hydrolysis of trehalose during growth of peanut rhizobia in hyperosmotic media. Dardanelli MS; González PS; Bueno MA; Ghittoni NE J Basic Microbiol; 2000; 40(3):149-56. PubMed ID: 10957956 [TBL] [Abstract][Full Text] [Related]
51. High intracellular trehalase activity prevents the storage of trehalose in the yeast Dekkera bruxellensis. Leite FC; Leite DV; Pereira LF; de Barros Pita W; de Morais MA Lett Appl Microbiol; 2016 Sep; 63(3):210-4. PubMed ID: 27341694 [TBL] [Abstract][Full Text] [Related]
52. Rsf1p is required for an efficient metabolic shift from fermentative to glycerol-based respiratory growth in S. cerevisiae. Roberts GG; Hudson AP Yeast; 2009 Feb; 26(2):95-110. PubMed ID: 19235764 [TBL] [Abstract][Full Text] [Related]
53. Fermentative capacity of dry active wine yeast requires a specific oxidative stress response during industrial biomass growth. Pérez-Torrado R; Gómez-Pastor R; Larsson C; Matallana E Appl Microbiol Biotechnol; 2009 Jan; 81(5):951-60. PubMed ID: 18836715 [TBL] [Abstract][Full Text] [Related]
54. Effects of acetic acid on the kinetics of xylose fermentation by an engineered, xylose-isomerase-based Saccharomyces cerevisiae strain. Bellissimi E; van Dijken JP; Pronk JT; van Maris AJ FEMS Yeast Res; 2009 May; 9(3):358-64. PubMed ID: 19416101 [TBL] [Abstract][Full Text] [Related]
55. Overexpression of ADH1 and HXT1 genes in the yeast Saccharomyces cerevisiae improves the fermentative efficiency during tequila elaboration. Gutiérrez-Lomelí M; Torres-Guzmán JC; González-Hernández GA; Cira-Chávez LA; Pelayo-Ortiz C; Ramírez-Córdova Jde J Antonie Van Leeuwenhoek; 2008 May; 93(4):363-71. PubMed ID: 18240006 [TBL] [Abstract][Full Text] [Related]
56. On the mechanism by which a heat shock induces trehalose accumulation in Saccharomyces cerevisiae. Neves MJ; François J Biochem J; 1992 Dec; 288 ( Pt 3)(Pt 3):859-64. PubMed ID: 1335235 [TBL] [Abstract][Full Text] [Related]
57. A novel trehalase from Mycobacterium smegmatis - purification, properties, requirements. Carroll JD; Pastuszak I; Edavana VK; Pan YT; Elbein AD FEBS J; 2007 Apr; 274(7):1701-14. PubMed ID: 17319935 [TBL] [Abstract][Full Text] [Related]
58. Role of Gts1p in regulation of energy-metabolism oscillation in continuous cultures of the yeast Saccharomyces cerevisiae. Xu Z; Tsurugi K Yeast; 2007 Mar; 24(3):161-70. PubMed ID: 17351907 [TBL] [Abstract][Full Text] [Related]
59. A new model for the aerobic metabolism of yeast allows the detailed analysis of the metabolic regulation during glucose pulse. Kesten D; Kummer U; Sahle S; Hübner K Biophys Chem; 2015 Nov; 206():40-57. PubMed ID: 26176974 [TBL] [Abstract][Full Text] [Related]
60. Role of 14-3-3 proteins in the regulation of neutral trehalase in the yeast Saccharomyces cerevisiae. Panni S; Landgraf C; Volkmer-Engert R; Cesareni G; Castagnoli L FEMS Yeast Res; 2008 Feb; 8(1):53-63. PubMed ID: 17916074 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]