These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 1660000)

  • 61. Structures of metal sites of oxidized bovine heart cytochrome c oxidase at 2.8 A.
    Tsukihara T; Aoyama H; Yamashita E; Tomizaki T; Yamaguchi H; Shinzawa-Itoh K; Nakashima R; Yaono R; Yoshikawa S
    Science; 1995 Aug; 269(5227):1069-74. PubMed ID: 7652554
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Intracomplex electron transfer between ruthenium-cytochrome c derivatives and cytochrome c oxidase.
    Pan LP; Hibdon S; Liu RQ; Durham B; Millett F
    Biochemistry; 1993 Aug; 32(33):8492-8. PubMed ID: 8395206
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Steady state redox levels in cytochrome oxidase: relevance for in vivo near infrared spectroscopy (NIRS).
    Cooper CE; Sharpe MA; Mason MG; Nicholls P
    Adv Exp Med Biol; 2009; 645():123-8. PubMed ID: 19227460
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Intramolecular electron transfer in cytochrome c oxidase: a cascade of equilibria.
    Verkhovsky MI; Morgan JE; Wikström M
    Biochemistry; 1992 Dec; 31(47):11860-3. PubMed ID: 1332775
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Electron transfer to the binuclear center in cytochrome oxidase: catalytic significance and evidence for an additional intermediate.
    Malatesta F; Sarti P; Antonini G; Vallone B; Brunori M
    Proc Natl Acad Sci U S A; 1990 Oct; 87(19):7410-3. PubMed ID: 2170978
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Effects of mutation of residue I67 on redox-linked protonation processes in yeast cytochrome c oxidase.
    Meunier B; Ortwein C; Brandt U; Rich PR
    Biochem J; 1998 Mar; 330 ( Pt 3)(Pt 3):1197-200. PubMed ID: 9494085
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Perturbation of the CuA site in cytochrome-c oxidase of Paracoccus denitrificans by replacement of Met227 with isoleucine.
    Zickermann V; Verkhovsky M; Morgan J; Wikström M; Anemüller S; Bill E; Steffens GC; Ludwig B
    Eur J Biochem; 1995 Dec; 234(2):686-93. PubMed ID: 8536720
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Cytochrome c/cytochrome c oxidase interaction. Direct structural evidence for conformational changes during enzyme turnover.
    Sampson V; Alleyne T
    Eur J Biochem; 2001 Dec; 268(24):6534-44. PubMed ID: 11737208
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The kinetics of electron transfer between pseudomonas aeruginosa cytochrome c-551 and its oxidase.
    Silvestrini MC; Tordi MG; Colosimo A; Antonini E; Brunori M
    Biochem J; 1982 May; 203(2):445-51. PubMed ID: 6288000
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Kinetics of electron transfer between plastocyanin and the soluble CuA domain of cyanobacterial cytochrome c oxidase.
    Paumann M; Bernroitner M; Lubura B; Peer M; Jakopitsch C; Furtmüller PG; Peschek GA; Obinger C
    FEMS Microbiol Lett; 2004 Oct; 239(2):301-7. PubMed ID: 15476980
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Fourier-transform infrared study of cyanide binding to the Fea3-CuB binuclear site of bovine heart cytochrome c oxidase: implication of the redox-linked conformational change at the binuclear site.
    Tsubaki M
    Biochemistry; 1993 Jan; 32(1):164-73. PubMed ID: 8380331
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The electron-transfer reaction between azurin and the cytochrome c oxidase from Pseudomonas aeruginosa.
    Parr SR; Barber D; Greenwood C; Brunori M
    Biochem J; 1977 Nov; 167(2):447-55. PubMed ID: 202254
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Ionic strength dependence of the kinetics of electron transfer from bovine mitochondrial cytochrome c to bovine cytochrome c oxidase.
    Hazzard JT; Rong SY; Tollin G
    Biochemistry; 1991 Jan; 30(1):213-22. PubMed ID: 1846288
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Hydrogen/hydride ion relay--a mechanism for early electron transfer in cytochrome c oxidases.
    Alleyne T; Ashe D
    West Indian Med J; 2013 Jan; 62(1):3-11. PubMed ID: 24171321
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Proton and electron transfer during the reduction of molecular oxygen by fully reduced cytochrome c oxidase: a flow-flash investigation using optical multichannel detection.
    Paula S; Sucheta A; Szundi I; Einarsdóttir O
    Biochemistry; 1999 Mar; 38(10):3025-33. PubMed ID: 10074355
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Electron transfer kinetics during the reduction and turnover of the cytochrome caa3 complex from Bacillus subtilis.
    Assempour M; Lim D; Hill BC
    Biochemistry; 1998 Jul; 37(28):9991-8. PubMed ID: 9665704
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Biochemical and biophysical studies on cytochrome c oxidase. XVIII. Potentiometric titrations of cytochrome c oxidase followed by circular dichroism.
    Tiesjema RH; Hardy GP; van Gelder BF
    Biochim Biophys Acta; 1974 Jul; 357(1):24-33. PubMed ID: 4369809
    [No Abstract]   [Full Text] [Related]  

  • 78. Kinetics of inhibition of purified and mitochondrial cytochrome c oxidase by psychosine (beta-galactosylsphingosine).
    Cooper CE; Markus M; Seetulsingh SP; Wrigglesworth JM
    Biochem J; 1993 Feb; 290 ( Pt 1)(Pt 1):139-44. PubMed ID: 8382474
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Laser-flash-photolysis studies of p-cresol methylhydroxylase. Electron-transfer properties of the flavin and haem components.
    Bhattacharyya A; Tollin G; McIntire W; Singer TP
    Biochem J; 1985 Jun; 228(2):337-45. PubMed ID: 2990445
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Effect of high pH on the spectral and catalytic properties of beef heart cytochrome oxidase.
    Baker GM; Palmer G
    Biochemistry; 1987 Jun; 26(11):3038-44. PubMed ID: 3038174
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.