These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 1660007)

  • 21. Interactions of the C-11 hydroxyl of tetrodotoxin with the sodium channel outer vestibule.
    Choudhary G; Yotsu-Yamashita M; Shang L; Yasumoto T; Dudley SC
    Biophys J; 2003 Jan; 84(1):287-94. PubMed ID: 12524282
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Specificity for block by saxitoxin and divalent cations at a residue which determines sensitivity of sodium channel subtypes to guanidinium toxins.
    Favre I; Moczydlowski E; Schild L
    J Gen Physiol; 1995 Aug; 106(2):203-29. PubMed ID: 8537816
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structure of the sodium channel pore revealed by serial cysteine mutagenesis.
    Pérez-García MT; Chiamvimonvat N; Marban E; Tomaselli GF
    Proc Natl Acad Sci U S A; 1996 Jan; 93(1):300-4. PubMed ID: 8552626
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sodium channel mutation leading to saxitoxin resistance in clams increases risk of PSP.
    Bricelj VM; Connell L; Konoki K; Macquarrie SP; Scheuer T; Catterall WA; Trainer VL
    Nature; 2005 Apr; 434(7034):763-7. PubMed ID: 15815630
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tonic and phasic guanidinium toxin-block of skeletal muscle Na channels expressed in Mammalian cells.
    Moran O; Picollo A; Conti F
    Biophys J; 2003 May; 84(5):2999-3006. PubMed ID: 12719231
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The microI skeletal muscle sodium channel: mutation E403Q eliminates sensitivity to tetrodotoxin but not to mu-conotoxins GIIIA and GIIIB.
    Stephan MM; Potts JF; Agnew WS
    J Membr Biol; 1994 Jan; 137(1):1-8. PubMed ID: 7911843
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular determinants of drug access to the receptor site for antiarrhythmic drugs in the cardiac Na+ channel.
    Qu Y; Rogers J; Tanada T; Scheuer T; Catterall WA
    Proc Natl Acad Sci U S A; 1995 Dec; 92(25):11839-43. PubMed ID: 8524860
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tetrodotoxin, saxitoxin, chiriquitoxin: new perspectives on ionic channels.
    Kao CY
    Fed Proc; 1981 Jan; 40(1):30-5. PubMed ID: 6256215
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A tryptophan residue (W736) in the amino-terminus of the P-segment of domain II is involved in pore formation in Na(v)1.4 voltage-gated sodium channels.
    Carbonneau E; Vijayaragavan K; Chahine M
    Pflugers Arch; 2002 Oct; 445(1):18-24. PubMed ID: 12397382
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Functional expression of the rat heart I Na+ channel isoform. Demonstration of properties characteristic of native cardiac Na+ channels.
    Cribbs LL; Satin J; Fozzard HA; Rogart RB
    FEBS Lett; 1990 Nov; 275(1-2):195-200. PubMed ID: 2175715
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Functional expression of an arachnid sodium channel reveals residues responsible for tetrodotoxin resistance in invertebrate sodium channels.
    Du Y; Nomura Y; Liu Z; Huang ZY; Dong K
    J Biol Chem; 2009 Dec; 284(49):33869-75. PubMed ID: 19828457
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Binding properties of (3)H-PbTx-3 and (3)H-saxitoxin to brain membranes and to skeletal muscle membranes of puffer fish Fugu pardalis and the primary structure of a voltage-gated Na(+) channel alpha-subunit (fMNa1) from skeletal muscle of F. pardalis.
    Yotsu-Yamashita M; Nishimori K; Nitanai Y; Isemura M; Sugimoto A; Yasumoto T
    Biochem Biophys Res Commun; 2000 Jan; 267(1):403-12. PubMed ID: 10623632
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sodium channel selectivity filter regulates antiarrhythmic drug binding.
    Sunami A; Dudley SC; Fozzard HA
    Proc Natl Acad Sci U S A; 1997 Dec; 94(25):14126-31. PubMed ID: 9391164
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Architecture and pore block of eukaryotic voltage-gated sodium channels in view of NavAb bacterial sodium channel structure.
    Tikhonov DB; Zhorov BS
    Mol Pharmacol; 2012 Jul; 82(1):97-104. PubMed ID: 22505150
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Saxitoxin and tetrodotoxin. Electrostatic effects on sodium channel gating current in crayfish axons.
    Heggeness ST; Starkus JG
    Biophys J; 1986 Mar; 49(3):629-43. PubMed ID: 2421792
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Two subtypes of sodium channel with tetrodotoxin sensitivity and insensitivity detected in denervated mammalian skeletal muscle.
    Rogart RB; Regan LJ
    Brain Res; 1985 Mar; 329(1-2):314-8. PubMed ID: 2579711
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synthesis of skeletal analogues of saxitoxin derivatives and evaluation of their inhibitory activity on sodium ion channels Na(V)1.4 and Na(V)1.5.
    Shinohara R; Akimoto T; Iwamoto O; Hirokawa T; Yotsu-Yamashita M; Yamaoka K; Nagasawa K
    Chemistry; 2011 Oct; 17(43):12144-52. PubMed ID: 21922571
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Use-dependent block of sodium channels in frog myelinated nerve by tetrodotoxin and saxitoxin at negative holding potentials.
    Lönnendonker U
    Biochim Biophys Acta; 1989 Oct; 985(2):153-60. PubMed ID: 2553115
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Active groups of saxitoxin and tetrodotoxin as deduced from actions of saxitoxin analogues on frog muscle and squid axon.
    Kao CY; Walker SE
    J Physiol; 1982 Feb; 323():619-37. PubMed ID: 6284918
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A mutation in the pore of the sodium channel alters gating.
    Tomaselli GF; Chiamvimonvat N; Nuss HB; Balser JR; Pérez-García MT; Xu RH; Orias DW; Backx PH; Marban E
    Biophys J; 1995 May; 68(5):1814-27. PubMed ID: 7612823
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.