These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
230 related articles for article (PubMed ID: 16600330)
1. Trace element availability and plant growth in a mine-spill-contaminated soil under assisted natural remediation II. Plants. Pérez-de-Mora A; Madejón E; Burgos P; Cabrera F Sci Total Environ; 2006 Jun; 363(1-3):38-45. PubMed ID: 16600330 [TBL] [Abstract][Full Text] [Related]
2. Trace element availability and plant growth in a mine-spill contaminated soil under assisted natural remediation I. Soils. Pérez-de-Mora A; Madejón E; Burgos P; Cabrera F Sci Total Environ; 2006 Jun; 363(1-3):28-37. PubMed ID: 16581109 [TBL] [Abstract][Full Text] [Related]
3. Soil amendments reduce trace element solubility in a contaminated soil and allow regrowth of natural vegetation. Madejón E; de Mora AP; Felipe E; Burgos P; Cabrera F Environ Pollut; 2006 Jan; 139(1):40-52. PubMed ID: 16005126 [TBL] [Abstract][Full Text] [Related]
4. Trace elements, pH and organic matter evolution in contaminated soils under assisted natural remediation: a 4-year field study. Madejón E; Madejón P; Burgos P; Pérez de Mora A; Cabrera F J Hazard Mater; 2009 Mar; 162(2-3):931-8. PubMed ID: 18602216 [TBL] [Abstract][Full Text] [Related]
5. Growth of Populus alba and its influence on soil trace element availability. Ciadamidaro L; Madejón E; Puschenreiter M; Madejón P Sci Total Environ; 2013 Jun; 454-455():337-47. PubMed ID: 23562686 [TBL] [Abstract][Full Text] [Related]
6. The effect of compost treatments and a plant cover with Agrostis tenuis on the immobilization/mobilization of trace elements in a mine-contaminated soil. Alvarenga P; de Varennes A; Cunha-Queda AC Int J Phytoremediation; 2014; 16(2):138-54. PubMed ID: 24912206 [TBL] [Abstract][Full Text] [Related]
7. Phytostabilization of amended soils polluted with trace elements using the Mediterranean shrub: Rosmarinus officinalis. Madejón P; Burgos P; Cabrera F; Madejón E Int J Phytoremediation; 2009 Aug; 11(6):542-57. PubMed ID: 19810354 [TBL] [Abstract][Full Text] [Related]
8. A comparison of phytoremediation capability of selected plant species for given trace elements. Fischerová Z; Tlustos P; Jirina Száková ; Kornelie Sichorová Environ Pollut; 2006 Nov; 144(1):93-100. PubMed ID: 16516363 [TBL] [Abstract][Full Text] [Related]
9. Remediation of metal polluted mine soil with compost: co-composting versus incorporation. Tandy S; Healey JR; Nason MA; Williamson JC; Jones DL Environ Pollut; 2009 Feb; 157(2):690-7. PubMed ID: 18819736 [TBL] [Abstract][Full Text] [Related]
10. Effects of two chelating agents (EDTA and DTPA) on the autochthonous vegetation of a soil polluted with Cu, Zn and Cd. Pastor J; Aparicio AM; Gutierrez-Maroto A; Hernández AJ Sci Total Environ; 2007 May; 378(1-2):114-8. PubMed ID: 17307245 [TBL] [Abstract][Full Text] [Related]
11. Effects of compost, pig slurry and lime on trace element solubility and toxicity in two soils differently affected by mining activities. Pardo T; Clemente R; Bernal MP Chemosphere; 2011 Jul; 84(5):642-50. PubMed ID: 21492902 [TBL] [Abstract][Full Text] [Related]
12. The use of a halophytic plant species and organic amendments for the remediation of a trace elements-contaminated soil under semi-arid conditions. Clemente R; Walker DJ; Pardo T; Martínez-Fernández D; Bernal MP J Hazard Mater; 2012 Jul; 223-224():63-71. PubMed ID: 22595543 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of composts and liming materials in the phytostabilization of a mine soil using perennial ryegrass. Alvarenga P; Gonçalves AP; Fernandes RM; de Varennes A; Vallini G; Duarte E; Cunha-Queda AC Sci Total Environ; 2008 Nov; 406(1-2):43-56. PubMed ID: 18799197 [TBL] [Abstract][Full Text] [Related]
14. Trace element accumulation in woody plants of the Guadiamar Valley, SW Spain: a large-scale phytomanagement case study. Domínguez MT; Marañón T; Murillo JM; Schulin R; Robinson BH Environ Pollut; 2008 Mar; 152(1):50-9. PubMed ID: 17602809 [TBL] [Abstract][Full Text] [Related]
15. Long-term effects of aided phytostabilisation of trace elements on microbial biomass and activity, enzyme activities, and composition of microbial community in the Jales contaminated mine spoils. Renella G; Landi L; Ascher J; Ceccherini MT; Pietramellara G; Mench M; Nannipieri P Environ Pollut; 2008 Apr; 152(3):702-12. PubMed ID: 17692442 [TBL] [Abstract][Full Text] [Related]
16. Effects of elevated CO2 concentrations and fly ash amended soils on trace element accumulation and translocation among roots, stems and seeds of Glycine max (L.) Merr. Rodriguez JH; Klumpp A; Fangmeier A; Pignata ML J Hazard Mater; 2011 Mar; 187(1-3):58-66. PubMed ID: 21146924 [TBL] [Abstract][Full Text] [Related]
17. Phytostabilization of semiarid soils residually contaminated with trace elements using by-products: sustainability and risks. Pérez-de-Mora A; Madejón P; Burgos P; Cabrera F; Lepp NW; Madejón E Environ Pollut; 2011 Oct; 159(10):3018-27. PubMed ID: 21561696 [TBL] [Abstract][Full Text] [Related]
18. Alleviation of environmental risks associated with severely contaminated mine tailings using amendments: Modeling of trace element speciation, solubility, and plant accumulation. Pardo T; Bes C; Bernal MP; Clemente R Environ Toxicol Chem; 2016 Nov; 35(11):2874-2884. PubMed ID: 27019401 [TBL] [Abstract][Full Text] [Related]
19. Assessment of single extraction methods for the prediction of bioavailability of metals to Brassica juncea L. Czern. (var. Vaibhav) grown on tannery waste contaminated soil. Gupta AK; Sinha S J Hazard Mater; 2007 Oct; 149(1):144-50. PubMed ID: 17475401 [TBL] [Abstract][Full Text] [Related]
20. Plant community tolerant to trace elements growing on the degraded soils of São Domingos mine in the south east of Portugal: environmental implications. Freitas H; Prasad MN; Pratas J Environ Int; 2004 Mar; 30(1):65-72. PubMed ID: 14664866 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]