These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1224 related articles for article (PubMed ID: 16600337)

  • 21. Accumulation of heavy metals in native Andean plants: potential tools for soil phytoremediation in Ancash (Peru).
    Chang Kee J; Gonzales MJ; Ponce O; Ramírez L; León V; Torres A; Corpus M; Loayza-Muro R
    Environ Sci Pollut Res Int; 2018 Dec; 25(34):33957-33966. PubMed ID: 30280335
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Heavy metal accumulation in trees growing on contaminated sites in Central Europe.
    Unterbrunner R; Puschenreiter M; Sommer P; Wieshammer G; Tlustos P; Zupan M; Wenzel WW
    Environ Pollut; 2007 Jul; 148(1):107-14. PubMed ID: 17224228
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The use of NTA and EDDS for enhanced phytoextraction of metals from a multiply contaminated soil by Brassica carinata.
    Quartacci MF; Irtelli B; Baker AJ; Navari-Izzo F
    Chemosphere; 2007 Aug; 68(10):1920-8. PubMed ID: 17418884
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phytostabilization of a metal contaminated sandy soil. II: Influence of compost and/or inorganic metal immobilizing soil amendments on metal leaching.
    Ruttens A; Colpaert JV; Mench M; Boisson J; Carleer R; Vangronsveld J
    Environ Pollut; 2006 Nov; 144(2):533-9. PubMed ID: 16530308
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sensitivity of Mediterranean woody seedlings to copper, nickel and zinc.
    Fuentes D; Disante KB; Valdecantos A; Cortina J; Vallejo VR
    Chemosphere; 2007 Jan; 66(3):412-20. PubMed ID: 16870229
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Strategies to use phytoextraction in very acidic soil contaminated by heavy metals.
    Pedron F; Petruzzelli G; Barbafieri M; Tassi E
    Chemosphere; 2009 May; 75(6):808-14. PubMed ID: 19217142
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation of the efficiency of a phytostabilization process with biological indicators of soil health.
    Epelde L; Becerril JM; Mijangos I; Garbisu C
    J Environ Qual; 2009; 38(5):2041-9. PubMed ID: 19704147
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of soil amendments on the extractability and speciation of cadmium, lead, and copper in a contaminated soil.
    Lin D; Zhou Q
    Bull Environ Contam Toxicol; 2009 Jul; 83(1):136-40. PubMed ID: 19381428
    [TBL] [Abstract][Full Text] [Related]  

  • 29. EDTA-assisted Pb phytoextraction.
    Saifullah ; Meers E; Qadir M; de Caritat P; Tack FM; Du Laing G; Zia MH
    Chemosphere; 2009 Mar; 74(10):1279-91. PubMed ID: 19121533
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prosopis juliflora--a green solution to decontaminate heavy metal (Cu and Cd) contaminated soils.
    Senthilkumar P; Prince WS; Sivakumar S; Subbhuraam CV
    Chemosphere; 2005 Sep; 60(10):1493-6. PubMed ID: 16054919
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of solution acidity and CaCl2 concentration on the removal of heavy metals from metal-contaminated rice soils.
    Kuo S; Lai MS; Lin CW
    Environ Pollut; 2006 Dec; 144(3):918-25. PubMed ID: 16603295
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exploring element accumulation patterns of a metal excluder plant naturally colonizing a highly contaminated soil.
    Pignattelli S; Colzi I; Buccianti A; Cecchi L; Arnetoli M; Monnanni R; Gabbrielli R; Gonnelli C
    J Hazard Mater; 2012 Aug; 227-228():362-9. PubMed ID: 22673060
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lead, zinc, and cadmium uptake, accumulation, and phytoremediation by plants growing around Tang-e Douzan lead-zinc mine, Iran.
    Hesami R; Salimi A; Ghaderian SM
    Environ Sci Pollut Res Int; 2018 Mar; 25(9):8701-8714. PubMed ID: 29322395
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Soil pollution assessment and identification of hyperaccumulating plants in chromated copper arsenate (CCA) contaminated sites, Korea.
    Usman AR; Lee SS; Awad YM; Lim KJ; Yang JE; Ok YS
    Chemosphere; 2012 May; 87(8):872-8. PubMed ID: 22342337
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Growth response of Zea mays L. in pyrene-copper co-contaminated soil and the fate of pollutants.
    Lin Q; Shen KL; Zhao HM; Li WH
    J Hazard Mater; 2008 Feb; 150(3):515-21. PubMed ID: 17574741
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cadmium, copper, lead and zinc accumulation in wild plant species near a lead smelter.
    Xing W; Liu H; Banet T; Wang H; Ippolito JA; Li L
    Ecotoxicol Environ Saf; 2020 Jul; 198():110683. PubMed ID: 32361499
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Availability of heavy metals for uptake by Salix viminalis on a moderately contaminated dredged sediment disposal site.
    Meers E; Lamsal S; Vervaeke P; Hopgood M; Lust N; Tack FM
    Environ Pollut; 2005 Sep; 137(2):354-64. PubMed ID: 15963374
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metal concentrations in the soils and native plants surrounding the old flotation tailings pond of the copper mining and smelting complex Bor (Serbia).
    Antonijević MM; Dimitrijević MD; Milić SM; Nujkić MM
    J Environ Monit; 2012 Mar; 14(3):866-77. PubMed ID: 22314513
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Uptake of heavy metals by native species growing in a mining area in Sardinia, Italy: discovering native flora for phytoremediation.
    Barbafieri M; Dadea C; Tassi E; Bretzel F; Fanfani L
    Int J Phytoremediation; 2011; 13(10):985-97. PubMed ID: 21972566
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhanced phytoextraction of Pb and other metals from artificially contaminated soils through the combined application of EDTA and EDDS.
    Luo C; Shen Z; Li X; Baker AJ
    Chemosphere; 2006 Jun; 63(10):1773-84. PubMed ID: 16297960
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 62.