BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 16600424)

  • 1. Phosphorylation of the p34(cdc2) target site on goldfish germinal vesicle lamin B3 before oocyte maturation.
    Yamaguchi A; Katsu Y; Matsuyama M; Yoshikuni M; Nagahama Y
    Eur J Cell Biol; 2006 Jun; 85(6):501-17. PubMed ID: 16600424
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cyclin B in fish oocytes: its cDNA and amino acid sequences, appearance during maturation, and induction of p34cdc2 activation.
    Hirai T; Yamashita M; Yoshikuni M; Lou YH; Nagahama Y
    Mol Reprod Dev; 1992 Oct; 33(2):131-40. PubMed ID: 1418982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Behavior of the components of maturation-promoting factor, cdc2 kinase and cyclin B, during oocyte maturation of goldfish.
    Katsu Y; Yamashita M; Kajiura H; Nagahama Y
    Dev Biol; 1993 Nov; 160(1):99-107. PubMed ID: 8224552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro characterization of the RS motif in N-terminal head domain of goldfish germinal vesicle lamin B3 necessary for phosphorylation of the p34cdc2 target serine by SRPK1.
    Yamaguchi A; Iwatani M; Ogawa M; Kitano H; Matsuyama M
    FEBS Open Bio; 2013; 3():165-76. PubMed ID: 23772390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular cloning and immunological analysis of goldfish cyclin A during oocyte maturation.
    Katsu Y; Yamashita M; Hirai T; Tokumoto T; Kajiura H; Nagahama Y
    Dev Biol; 1995 Aug; 170(2):616-25. PubMed ID: 7649388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and molecular cloning of germinal vesicle lamin B3 in goldfish (Carassius auratus) oocytes.
    Yamaguchi A; Yamashita M; Yoshikuni M; Nagahama Y
    Eur J Biochem; 2001 Feb; 268(4):932-9. PubMed ID: 11179959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional analysis of phosphorylation sites in human lamin A controlling lamin disassembly, nuclear transport and assembly.
    Haas M; Jost E
    Eur J Cell Biol; 1993 Dec; 62(2):237-47. PubMed ID: 7925482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular mechanisms of the activation of maturation-promoting factor during goldfish oocyte maturation.
    Yamashita M; Kajiura H; Tanaka T; Onoe S; Nagahama Y
    Dev Biol; 1995 Mar; 168(1):62-75. PubMed ID: 7883079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein phosphorylation sites regulate the function of the bipartite NLS of nucleolin.
    Schwab MS; Dreyer C
    Eur J Cell Biol; 1997 Aug; 73(4):287-97. PubMed ID: 9270871
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Somatic lamins in germinal vesicles of goldfish (Carassius auratus) vitellogenic oocytes.
    Yamaguchi A; Nagahama Y
    Cell Struct Funct; 2001 Dec; 26(6):693-703. PubMed ID: 11942628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for the direct involvement of lamins in the assembly of a replication competent nucleus.
    Jenkins H; Whitfield WG; Goldberg MW; Allen TD; Hutchison CJ
    Acta Biochim Pol; 1995; 42(2):133-43. PubMed ID: 8588455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteomic profiling of murine oocyte maturation.
    Vitale AM; Calvert ME; Mallavarapu M; Yurttas P; Perlin J; Herr J; Coonrod S
    Mol Reprod Dev; 2007 May; 74(5):608-16. PubMed ID: 17044029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of cdc2 kinase phosphorylation and conserved N-terminal proteolysis motifs in cytoplasmic polyadenylation-element-binding protein (CPEB) complex dissociation and degradation.
    Thom G; Minshall N; Git A; Argasinska J; Standart N
    Biochem J; 2003 Feb; 370(Pt 1):91-100. PubMed ID: 12401129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Progesterone inhibits protein kinase A (PKA) in Xenopus oocytes: demonstration of endogenous PKA activities using an expressed substrate.
    Wang J; Liu XJ
    J Cell Sci; 2004 Oct; 117(Pt 21):5107-16. PubMed ID: 15456849
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Filaments made from A- and B-type lamins differ in structure and organization.
    Goldberg MW; Huttenlauch I; Hutchison CJ; Stick R
    J Cell Sci; 2008 Jan; 121(Pt 2):215-25. PubMed ID: 18187453
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nucleoskeleton and nucleo-cytoplasmic transport in oocytes and early development of Xenopus laevis.
    Rudt F; Firmbach-Kraft I; Petersen M; Pieler T; Stick R
    Int J Dev Biol; 1996 Feb; 40(1):273-8. PubMed ID: 8735938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nuclear titin interacts with A- and B-type lamins in vitro and in vivo.
    Zastrow MS; Flaherty DB; Benian GM; Wilson KL
    J Cell Sci; 2006 Jan; 119(Pt 2):239-49. PubMed ID: 16410549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo assembly kinetics of fluorescently labeled Xenopus lamin A mutants.
    Schmidt M; Krohne G
    Eur J Cell Biol; 1995 Dec; 68(4):345-54. PubMed ID: 8690014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of CaaX-dependent modifications in membrane association of Xenopus nuclear lamin B3 during meiosis and the fate of B3 in transfected mitotic cells.
    Firmbach-Kraft I; Stick R
    J Cell Biol; 1993 Dec; 123(6 Pt 2):1661-70. PubMed ID: 8276888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic properties of germ line-specific lamin B3: the role of the shortened rod domain.
    Schütz W; Benavente R; Alsheimer M
    Eur J Cell Biol; 2005 Jul; 84(7):649-62. PubMed ID: 16106909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.