BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

466 related articles for article (PubMed ID: 16600642)

  • 1. Magnetic resonance imaging of freely moving objects: prospective real-time motion correction using an external optical motion tracking system.
    Zaitsev M; Dold C; Sakas G; Hennig J; Speck O
    Neuroimage; 2006 Jul; 31(3):1038-50. PubMed ID: 16600642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advantages and limitations of prospective head motion compensation for MRI using an optical motion tracking device.
    Dold C; Zaitsev M; Speck O; Firle EA; Hennig J; Sakas G
    Acad Radiol; 2006 Sep; 13(9):1093-103. PubMed ID: 16935721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuously moving table MRI in oncology.
    Schaefer AO; Langer M; Baumann T
    Rofo; 2010 Nov; 182(11):954-64. PubMed ID: 20922644
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimizing T2-weighted magnetic resonance sequences for surface coil microimaging of the eye with regard to lid, eyeball and head moving artifacts.
    Obata T; Uemura K; Nonaka H; Tamura M; Tanada S; Ikehira H
    Magn Reson Imaging; 2006 Jan; 24(1):97-101. PubMed ID: 16410184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Model evaluation and calibration for prospective respiratory motion correction in coronary MR angiography based on 3-D image registration.
    Manke D; Rösch P; Nehrke K; Börnert P; Dössel O
    IEEE Trans Med Imaging; 2002 Sep; 21(9):1132-41. PubMed ID: 12564881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Online motion correction for diffusion-weighted segmented-EPI and FLASH imaging.
    Weih KS; Driesel W; von Mengershausen M; Norris DG
    MAGMA; 2004 May; 16(6):277-83. PubMed ID: 15052418
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Motion artifact control in body MR imaging.
    Barish MA; Jara H
    Magn Reson Imaging Clin N Am; 1999 May; 7(2):289-301. PubMed ID: 10382162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. k-Space based summary motion detection for functional magnetic resonance imaging.
    Caparelli EC; Tomasi D; Arnold S; Chang L; Ernst T
    Neuroimage; 2003 Oct; 20(2):1411-8. PubMed ID: 14568510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Motion-compensated MR valve imaging with COMB tag tracking and super-resolution enhancement.
    Dowsey AW; Keegan J; Lerotic M; Thom S; Firmin D; Yang GZ
    Med Image Anal; 2007 Oct; 11(5):478-91. PubMed ID: 17804277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantifying head motion associated with motor tasks used in fMRI.
    Seto E; Sela G; McIlroy WE; Black SE; Staines WR; Bronskill MJ; McIntosh AR; Graham SJ
    Neuroimage; 2001 Aug; 14(2):284-97. PubMed ID: 11467903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reproducible Simulation of Respiratory Motion in Porcine Lung Explants.
    Biederer J; Plathow C; Schoebinger M; Tetzlaff R; Puderbach M; Bolte H; Zaporozhan J; Meinzer HP; Heller M; Kauczor HU
    Rofo; 2006 Nov; 178(11):1067-72. PubMed ID: 17128376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantification of the 3D relative movement of external marker sets vs. bones based on magnetic resonance imaging.
    Sangeux M; Marin F; Charleux F; Dürselen L; Ho Ba Tho MC
    Clin Biomech (Bristol, Avon); 2006 Nov; 21(9):984-91. PubMed ID: 16844273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Inverse iterative correction for translational motion artifact of magnetic resonance imaging based on histogram entropy minimization].
    Jiang GP; Chen WF; Hou ZS
    Di Yi Jun Yi Da Xue Xue Bao; 2005 Jun; 25(6):655-9. PubMed ID: 15958301
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous PET-MR acquisition and MR-derived motion fields for correction of non-rigid motion in PET.
    Tsoumpas C; Mackewn JE; Halsted P; King AP; Buerger C; Totman JJ; Schaeffter T; Marsden PK
    Ann Nucl Med; 2010 Dec; 24(10):745-50. PubMed ID: 20842466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Motion related artifacts in spin-echo MR imaging: effects of sequence parameters on image quality at 1.5 Tesla.
    Adjei ON; Sugimura H; Tamura S; Shimizu T; Kihara Y; Kakitsubata S; Kakitsubata Y; Watanabe K
    Radiat Med; 1996; 14(4):179-83. PubMed ID: 8916259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-voxel MRS with prospective motion correction and retrospective frequency correction.
    Zaitsev M; Speck O; Hennig J; Büchert M
    NMR Biomed; 2010 Apr; 23(3):325-32. PubMed ID: 20101605
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of a self-developed planning and self-constructed navigation system on skull base surgery: 10 years experience.
    Caversaccio M; Langlotz F; Nolte LP; Häusler R
    Acta Otolaryngol; 2007 Apr; 127(4):403-7. PubMed ID: 17453461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved optimization strategies for autofocusing motion compensation in MRI via the analysis of image metric maps.
    Lin W; Song HK
    Magn Reson Imaging; 2006 Jul; 24(6):751-60. PubMed ID: 16824970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An integrated head immobilization system and high-performance RF coil for fMRI of visual paradigms at 1.5 T.
    Thulborn KR; Shen GX
    J Magn Reson; 1999 Jul; 139(1):26-34. PubMed ID: 10388581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of MV and kV imager correlation for maintaining continuous real-time 3D internal marker tracking during beam interruptions.
    Wiersma RD; Riaz N; Dieterich S; Suh Y; Xing L
    Phys Med Biol; 2009 Jan; 54(1):89-103. PubMed ID: 19060356
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.