BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 16600668)

  • 1. Restoring p53-mediated apoptosis in cancer cells: new opportunities for cancer therapy.
    Yu Q
    Drug Resist Updat; 2006; 9(1-2):19-25. PubMed ID: 16600668
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Restoration of wild-type p53 function in human cancer: relevance for tumor therapy.
    Bossi G; Sacchi A
    Head Neck; 2007 Mar; 29(3):272-84. PubMed ID: 17230559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mouse double minute antagonist Nutlin-3a enhances chemotherapy-induced apoptosis in cancer cells with mutant p53 by activating E2F1.
    Ambrosini G; Sambol EB; Carvajal D; Vassilev LT; Singer S; Schwartz GK
    Oncogene; 2007 May; 26(24):3473-81. PubMed ID: 17146434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MDM2 and MDM4: p53 regulators as targets in anticancer therapy.
    Toledo F; Wahl GM
    Int J Biochem Cell Biol; 2007; 39(7-8):1476-82. PubMed ID: 17499002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Small-molecule MDM2 antagonists reveal aberrant p53 signaling in cancer: implications for therapy.
    Tovar C; Rosinski J; Filipovic Z; Higgins B; Kolinsky K; Hilton H; Zhao X; Vu BT; Qing W; Packman K; Myklebost O; Heimbrook DC; Vassilev LT
    Proc Natl Acad Sci U S A; 2006 Feb; 103(6):1888-93. PubMed ID: 16443686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential chemosensitivity of breast cancer cells to ganciclovir treatment following adenovirus-mediated herpes simplex virus thymidine kinase gene transfer.
    Li PX; Ngo D; Brade AM; Klamut HJ
    Cancer Gene Ther; 1999; 6(2):179-90. PubMed ID: 10195885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MDM2 inhibitors for cancer therapy.
    Vassilev LT
    Trends Mol Med; 2007 Jan; 13(1):23-31. PubMed ID: 17126603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cyclin-dependent kinase inhibitors sensitize tumor cells to nutlin-induced apoptosis: a potent drug combination.
    Cheok CF; Dey A; Lane DP
    Mol Cancer Res; 2007 Nov; 5(11):1133-45. PubMed ID: 18025259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strategies for manipulating the p53 pathway in the treatment of human cancer.
    Hupp TR; Lane DP; Ball KL
    Biochem J; 2000 Nov; 352 Pt 1(Pt 1):1-17. PubMed ID: 11062053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. p53-independent activation of the hdm2-P2 promoter through multiple transcription factor response elements results in elevated hdm2 expression in estrogen receptor alpha-positive breast cancer cells.
    Phelps M; Darley M; Primrose JN; Blaydes JP
    Cancer Res; 2003 May; 63(10):2616-23. PubMed ID: 12750288
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergistic tumor suppression by coexpression of FUS1 and p53 is associated with down-regulation of murine double minute-2 and activation of the apoptotic protease-activating factor 1-dependent apoptotic pathway in human non-small cell lung cancer cells.
    Deng WG; Kawashima H; Wu G; Jayachandran G; Xu K; Minna JD; Roth JA; Ji L
    Cancer Res; 2007 Jan; 67(2):709-17. PubMed ID: 17234782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient p53 activation and apoptosis by simultaneous disruption of binding to MDM2 and MDMX.
    Hu B; Gilkes DM; Chen J
    Cancer Res; 2007 Sep; 67(18):8810-7. PubMed ID: 17875722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The genetics of the p53 pathway, apoptosis and cancer therapy.
    Vazquez A; Bond EE; Levine AJ; Bond GL
    Nat Rev Drug Discov; 2008 Dec; 7(12):979-87. PubMed ID: 19043449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Classic and novel roles of p53: prospects for anticancer therapy.
    Fuster JJ; Sanz-González SM; Moll UM; Andrés V
    Trends Mol Med; 2007 May; 13(5):192-9. PubMed ID: 17383232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel role for IGF-1R in p53-mediated apoptosis through translational modulation of the p53-Mdm2 feedback loop.
    Xiong L; Kou F; Yang Y; Wu J
    J Cell Biol; 2007 Sep; 178(6):995-1007. PubMed ID: 17846171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The early growth response gene EGR-1 behaves as a suppressor gene that is down-regulated independent of ARF/Mdm2 but not p53 alterations in fresh human gliomas.
    Calogero A; Arcella A; De Gregorio G; Porcellini A; Mercola D; Liu C; Lombari V; Zani M; Giannini G; Gagliardi FM; Caruso R; Gulino A; Frati L; Ragona G
    Clin Cancer Res; 2001 Sep; 7(9):2788-96. PubMed ID: 11555594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adenovirus-mediated overexpression of p14(ARF) induces p53 and Bax-independent apoptosis.
    Hemmati PG; Gillissen B; von Haefen C; Wendt J; Stärck L; Güner D; Dörken B; Daniel PT
    Oncogene; 2002 May; 21(20):3149-61. PubMed ID: 12082630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of the chemosensitivity of head and neck cancer cells based on the diverse function of mutated-p53.
    Shinagawa Y; Kawamata H; Omotehara F; Nakashiro K; Hoque MO; Furihata T; Horiuchi H; Imai Y; Fujimori T; Fujibayashi T
    Int J Oncol; 2003 Feb; 22(2):383-9. PubMed ID: 12527938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Restoring p53 tumor suppressor activity as an anticancer therapeutic strategy.
    Martinez JD
    Future Oncol; 2010 Dec; 6(12):1857-62. PubMed ID: 21142860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation of p53 by specific agents in potential cancer therapy.
    Ho JW; Song JZ; Leung YK
    Curr Med Chem Anticancer Agents; 2005 Mar; 5(2):131-5. PubMed ID: 15777220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.