These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 16600970)

  • 1. Assessing the role of aromatic residues in the amyloid aggregation of human muscle acylphosphatase.
    Bemporad F; Taddei N; Stefani M; Chiti F
    Protein Sci; 2006 Apr; 15(4):862-70. PubMed ID: 16600970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for a mechanism of amyloid formation involving molecular reorganisation within native-like precursor aggregates.
    Plakoutsi G; Bemporad F; Calamai M; Taddei N; Dobson CM; Chiti F
    J Mol Biol; 2005 Aug; 351(4):910-22. PubMed ID: 16024042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic analysis of amyloid formation in the presence of heparan sulfate: faster unfolding and change of pathway.
    Motamedi-Shad N; Monsellier E; Torrassa S; Relini A; Chiti F
    J Biol Chem; 2009 Oct; 284(43):29921-34. PubMed ID: 19700762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic partitioning of protein folding and aggregation.
    Chiti F; Taddei N; Baroni F; Capanni C; Stefani M; Ramponi G; Dobson CM
    Nat Struct Biol; 2002 Feb; 9(2):137-43. PubMed ID: 11799398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutational analysis of the propensity for amyloid formation by a globular protein.
    Chiti F; Taddei N; Bucciantini M; White P; Ramponi G; Dobson CM
    EMBO J; 2000 Apr; 19(7):1441-9. PubMed ID: 10747012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amyloid fibril formation by a partially structured intermediate state of alpha-chymotrypsin.
    Pallarès I; Vendrell J; Avilés FX; Ventura S
    J Mol Biol; 2004 Sep; 342(1):321-31. PubMed ID: 15313627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Yeast cell adhesion molecules have functional amyloid-forming sequences.
    Ramsook CB; Tan C; Garcia MC; Fung R; Soybelman G; Henry R; Litewka A; O'Meally S; Otoo HN; Khalaf RA; Dranginis AM; Gaur NK; Klotz SA; Rauceo JM; Jue CK; Lipke PN
    Eukaryot Cell; 2010 Mar; 9(3):393-404. PubMed ID: 20038605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutational analysis of the aggregation-prone and disaggregation-prone regions of acylphosphatase.
    Calamai M; Tartaglia GG; Vendruscolo M; Chiti F; Dobson CM
    J Mol Biol; 2009 Apr; 387(4):965-74. PubMed ID: 18809411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A molecular dynamics study of acylphosphatase in aggregation-promoting conditions: the influence of trifluoroethanol/water solvent.
    Flöck D; Daidone I; Di Nola A
    Biopolymers; 2004 Dec; 75(6):491-6. PubMed ID: 15526333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid oligomer formation of human muscle acylphosphatase induced by heparan sulfate.
    Motamedi-Shad N; Garfagnini T; Penco A; Relini A; Fogolari F; Corazza A; Esposito G; Bemporad F; Chiti F
    Nat Struct Mol Biol; 2012 Apr; 19(5):547-54, S1-2. PubMed ID: 22522822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Designing conditions for in vitro formation of amyloid protofilaments and fibrils.
    Chiti F; Webster P; Taddei N; Clark A; Stefani M; Ramponi G; Dobson CM
    Proc Natl Acad Sci U S A; 1999 Mar; 96(7):3590-4. PubMed ID: 10097081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct Conversion of an Enzyme from Native-like to Amyloid-like Aggregates within Inclusion Bodies.
    Elia F; Cantini F; Chiti F; Dobson CM; Bemporad F
    Biophys J; 2017 Jun; 112(12):2540-2551. PubMed ID: 28636911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stabilisation of alpha-helices by site-directed mutagenesis reveals the importance of secondary structure in the transition state for acylphosphatase folding.
    Taddei N; Chiti F; Fiaschi T; Bucciantini M; Capanni C; Stefani M; Serrano L; Dobson CM; Ramponi G
    J Mol Biol; 2000 Jul; 300(3):633-47. PubMed ID: 10884358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aggregation of the Acylphosphatase from Sulfolobus solfataricus: the folded and partially unfolded states can both be precursors for amyloid formation.
    Plakoutsi G; Taddei N; Stefani M; Chiti F
    J Biol Chem; 2004 Apr; 279(14):14111-9. PubMed ID: 14724277
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-assembly of aromatic α-amino acids into amyloid inspired nano/micro scaled architects.
    Singh P; Brar SK; Bajaj M; Narang N; Mithu VS; Katare OP; Wangoo N; Sharma RK
    Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():590-600. PubMed ID: 28024626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of amino acid hydrophobicity, aromaticity, and molecular volume on IAPP(20-29) amyloid self-assembly.
    Doran TM; Kamens AJ; Byrnes NK; Nilsson BL
    Proteins; 2012 Apr; 80(4):1053-65. PubMed ID: 22253015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of the effects of copper ions on protein aggregation using a model system.
    Capanni C; Taddei N; Gabrielli S; Messori L; Orioli P; Chiti F; Stefani M; Ramponi G
    Cell Mol Life Sci; 2004 Apr; 61(7-8):982-91. PubMed ID: 15095018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amyloid fibril formation by a normally folded protein in the absence of denaturants and agitation.
    Shokri MM; Ahmadian S; Bemporad F; Khajeh K; Chiti F
    Amyloid; 2013 Dec; 20(4):226-32. PubMed ID: 24053331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA-induced partial unfolding of prion protein leads to its polymerisation to amyloid.
    Nandi PK; Leclerc E; Nicole JC; Takahashi M
    J Mol Biol; 2002 Sep; 322(1):153-61. PubMed ID: 12215421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aggregation of intrinsically disordered fibrinogen as the influence of backbone conformation.
    Naeem A; Bhat SA; Iram A; Khan RH
    Arch Biochem Biophys; 2016 Aug; 603():38-47. PubMed ID: 27150313
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.