BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 16601142)

  • 1. Characterization of leptin-responsive neurons in the caudal brainstem.
    Ellacott KL; Halatchev IG; Cone RD
    Endocrinology; 2006 Jul; 147(7):3190-5. PubMed ID: 16601142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Divergent regulation of proopiomelanocortin neurons by leptin in the nucleus of the solitary tract and in the arcuate hypothalamic nucleus.
    Huo L; Grill HJ; Bjørbaek C
    Diabetes; 2006 Mar; 55(3):567-73. PubMed ID: 16505217
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neurochemical Characterization of Brainstem Pro-Opiomelanocortin Cells.
    Georgescu T; Lyons D; Doslikova B; Garcia AP; Marston O; Burke LK; Chianese R; Lam BYH; Yeo GSH; Rochford JJ; Garfield AS; Heisler LK
    Endocrinology; 2020 Apr; 161(4):. PubMed ID: 32166324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynorphin in pro-opiomelanocortin neurons of the hypothalamic arcuate nucleus.
    Maolood N; Meister B
    Neuroscience; 2008 Jun; 154(3):1121-31. PubMed ID: 18479830
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Possible crosstalk between leptin and prolactin during pregnancy.
    Nagaishi VS; Cardinali LI; Zampieri TT; Furigo IC; Metzger M; Donato J
    Neuroscience; 2014 Feb; 259():71-83. PubMed ID: 24316468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epigenomic and metabolic responses of hypothalamic POMC neurons to gestational nicotine exposure in adult offspring.
    Silva JP; Lambert G; van Booven D; Wahlestedt C
    Genome Med; 2016 Sep; 8(1):93. PubMed ID: 27609221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proopiomelanocortin neurons in nucleus tractus solitarius are activated by visceral afferents: regulation by cholecystokinin and opioids.
    Appleyard SM; Bailey TW; Doyle MW; Jin YH; Smart JL; Low MJ; Andresen MC
    J Neurosci; 2005 Apr; 25(14):3578-85. PubMed ID: 15814788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Leptin receptor-positive and leptin receptor-negative proopiomelanocortin neurons innervate an identical set of brain structures.
    Lima LB; Metzger M; Furigo IC; Donato J
    Brain Res; 2016 Sep; 1646():366-376. PubMed ID: 27321158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential effects of fasting and leptin on proopiomelanocortin peptides in the arcuate nucleus and in the nucleus of the solitary tract.
    Perello M; Stuart RC; Nillni EA
    Am J Physiol Endocrinol Metab; 2007 May; 292(5):E1348-57. PubMed ID: 17227963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neurochemical characterization of body weight-regulating leptin receptor neurons in the nucleus of the solitary tract.
    Garfield AS; Patterson C; Skora S; Gribble FM; Reimann F; Evans ML; Myers MG; Heisler LK
    Endocrinology; 2012 Oct; 153(10):4600-7. PubMed ID: 22869346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical characterization of leptin-activated neurons in the rat brain.
    Elias CF; Kelly JF; Lee CE; Ahima RS; Drucker DJ; Saper CB; Elmquist JK
    J Comp Neurol; 2000 Jul; 423(2):261-81. PubMed ID: 10867658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peripheral administration of nesfatin-1 reduces food intake in mice: the leptin-independent mechanism.
    Shimizu H; Oh-I S; Hashimoto K; Nakata M; Yamamoto S; Yoshida N; Eguchi H; Kato I; Inoue K; Satoh T; Okada S; Yamada M; Yada T; Mori M
    Endocrinology; 2009 Feb; 150(2):662-71. PubMed ID: 19176321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The central melanocortin system and the integration of short- and long-term regulators of energy homeostasis.
    Ellacott KL; Cone RD
    Recent Prog Horm Res; 2004; 59():395-408. PubMed ID: 14749511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cholecystokinin-mediated suppression of feeding involves the brainstem melanocortin system.
    Fan W; Ellacott KL; Halatchev IG; Takahashi K; Yu P; Cone RD
    Nat Neurosci; 2004 Apr; 7(4):335-6. PubMed ID: 15034587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrophysiological actions of peripheral hormones on melanocortin neurons.
    Cowley MA; Cone R; Enriori P; Louiselle I; Williams SM; Evans AE
    Ann N Y Acad Sci; 2003 Jun; 994():175-86. PubMed ID: 12851314
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Defining POMC neurons using transgenic reagents: impact of transient Pomc expression in diverse immature neuronal populations.
    Padilla SL; Reef D; Zeltser LM
    Endocrinology; 2012 Mar; 153(3):1219-31. PubMed ID: 22166984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuroendocrine control of food intake.
    Valassi E; Scacchi M; Cavagnini F
    Nutr Metab Cardiovasc Dis; 2008 Feb; 18(2):158-68. PubMed ID: 18061414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of ankyrin repeat and suppressor of cytokine signaling box protein 4 (Asb-4) in proopiomelanocortin neurons of the arcuate nucleus of mice produces a hyperphagic, lean phenotype.
    Li JY; Chai BX; Zhang W; Wang H; Mulholland MW
    Endocrinology; 2010 Jan; 151(1):134-42. PubMed ID: 19934378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hypothalamic proopiomelanocortin (POMC) neurons have a cholinergic phenotype.
    Meister B; Gömüç B; Suarez E; Ishii Y; Dürr K; Gillberg L
    Eur J Neurosci; 2006 Nov; 24(10):2731-40. PubMed ID: 17156199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A potential role for hypothalamomedullary POMC projections in leptin-induced suppression of food intake.
    Zheng H; Patterson LM; Rhodes CJ; Louis GW; Skibicka KP; Grill HJ; Myers MG; Berthoud HR
    Am J Physiol Regul Integr Comp Physiol; 2010 Mar; 298(3):R720-8. PubMed ID: 20071607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.