BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

392 related articles for article (PubMed ID: 16601750)

  • 21. Cyclic AMP-induced p53 destabilization is independent of EPAC in pre-B acute lymphoblastic leukemia cells in vitro.
    Safa M; Kazemi A; Zaker F; Razmkhah F
    J Recept Signal Transduct Res; 2011 Jun; 31(3):256-63. PubMed ID: 21619452
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inhibition of the p53-MDM2 interaction by adenovirus delivery of ribosomal protein L23 stabilizes p53 and induces cell cycle arrest and apoptosis in gastric cancer.
    Zhang Y; Shi Y; Li X; Du W; Luo G; Gou Y; Wang X; Guo X; Liu J; Ding J; Wu K; Fan D
    J Gene Med; 2010 Feb; 12(2):147-56. PubMed ID: 20020415
    [TBL] [Abstract][Full Text] [Related]  

  • 23. PML regulates p53 stability by sequestering Mdm2 to the nucleolus.
    Bernardi R; Scaglioni PP; Bergmann S; Horn HF; Vousden KH; Pandolfi PP
    Nat Cell Biol; 2004 Jul; 6(7):665-72. PubMed ID: 15195100
    [TBL] [Abstract][Full Text] [Related]  

  • 24. USP11 regulates p53 stability by deubiquitinating p53.
    Ke JY; Dai CJ; Wu WL; Gao JH; Xia AJ; Liu GP; Lv KS; Wu CL
    J Zhejiang Univ Sci B; 2014 Dec; 15(12):1032-8. PubMed ID: 25471832
    [TBL] [Abstract][Full Text] [Related]  

  • 25. YY1 inhibits the activation of the p53 tumor suppressor in response to genotoxic stress.
    Grönroos E; Terentiev AA; Punga T; Ericsson J
    Proc Natl Acad Sci U S A; 2004 Aug; 101(33):12165-70. PubMed ID: 15295102
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The MDM2 ubiquitination signal in the DNA-binding domain of p53 forms a docking site for calcium calmodulin kinase superfamily members.
    Craig AL; Chrystal JA; Fraser JA; Sphyris N; Lin Y; Harrison BJ; Scott MT; Dornreiter I; Hupp TR
    Mol Cell Biol; 2007 May; 27(9):3542-55. PubMed ID: 17339337
    [TBL] [Abstract][Full Text] [Related]  

  • 27. ATM and Chk2-dependent phosphorylation of MDMX contribute to p53 activation after DNA damage.
    Chen L; Gilkes DM; Pan Y; Lane WS; Chen J
    EMBO J; 2005 Oct; 24(19):3411-22. PubMed ID: 16163388
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Melatonin down-regulates MDM2 gene expression and enhances p53 acetylation in MCF-7 cells.
    Proietti S; Cucina A; Dobrowolny G; D'Anselmi F; Dinicola S; Masiello MG; Pasqualato A; Palombo A; Morini V; Reiter RJ; Bizzarri M
    J Pineal Res; 2014 Aug; 57(1):120-9. PubMed ID: 24920214
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An Mdm2 antagonist, Nutlin-3a, induces p53-dependent and proteasome-mediated poly(ADP-ribose) polymerase1 degradation in mouse fibroblasts.
    Matsushima S; Okita N; Oku M; Nagai W; Kobayashi M; Higami Y
    Biochem Biophys Res Commun; 2011 Apr; 407(3):557-61. PubMed ID: 21419099
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mdm2 is required for inhibition of Cdk2 activity by p21, thereby contributing to p53-dependent cell cycle arrest.
    Giono LE; Manfredi JJ
    Mol Cell Biol; 2007 Jun; 27(11):4166-78. PubMed ID: 17371838
    [TBL] [Abstract][Full Text] [Related]  

  • 31. hnRNP K: an HDM2 target and transcriptional coactivator of p53 in response to DNA damage.
    Moumen A; Masterson P; O'Connor MJ; Jackson SP
    Cell; 2005 Dec; 123(6):1065-78. PubMed ID: 16360036
    [TBL] [Abstract][Full Text] [Related]  

  • 32. p53 stabilization and transactivation by a von Hippel-Lindau protein.
    Roe JS; Kim H; Lee SM; Kim ST; Cho EJ; Youn HD
    Mol Cell; 2006 May; 22(3):395-405. PubMed ID: 16678111
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The prolyl isomerase Pin1 reveals a mechanism to control p53 functions after genotoxic insults.
    Zacchi P; Gostissa M; Uchida T; Salvagno C; Avolio F; Volinia S; Ronai Z; Blandino G; Schneider C; Del Sal G
    Nature; 2002 Oct; 419(6909):853-7. PubMed ID: 12397362
    [TBL] [Abstract][Full Text] [Related]  

  • 34. SUMO-specific protease SUSP4 positively regulates p53 by promoting Mdm2 self-ubiquitination.
    Lee MH; Lee SW; Lee EJ; Choi SJ; Chung SS; Lee JI; Cho JM; Seol JH; Baek SH; Kim KI; Chiba T; Tanaka K; Bang OS; Chung CH
    Nat Cell Biol; 2006 Dec; 8(12):1424-31. PubMed ID: 17086174
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Poly(ADP-ribosyl)ation is required for p53-dependent signal transduction induced by radiation.
    Wang X; Ohnishi K; Takahashi A; Ohnishi T
    Oncogene; 1998 Dec; 17(22):2819-25. PubMed ID: 9879988
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of polyamines in p53-dependent apoptosis of intestinal epithelial cells.
    Bhattacharya S; Ray RM; Johnson LR
    Cell Signal; 2009 Apr; 21(4):509-22. PubMed ID: 19136059
    [TBL] [Abstract][Full Text] [Related]  

  • 37. p53 mediates the negative regulation of MDM2 by orphan receptor TR3.
    Zhao BX; Chen HZ; Lei NZ; Li GD; Zhao WX; Zhan YY; Liu B; Lin SC; Wu Q
    EMBO J; 2006 Dec; 25(24):5703-15. PubMed ID: 17139261
    [TBL] [Abstract][Full Text] [Related]  

  • 38. DNA-PKcs-mediated stabilization of p53 by JNK2 is involved in arsenite-induced DNA damage and apoptosis in human embryo lung fibroblast cells.
    Li Y; Zhao Y; Jiang R; Xu Y; Ling M; Pang Y; Shen L; Zhou Y; Zhang J; Zhou J; Wang X; Liu Q
    Toxicol Lett; 2012 May; 210(3):302-10. PubMed ID: 22366412
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Signaling to p53: breaking the posttranslational modification code.
    Appella E; Anderson CW
    Pathol Biol (Paris); 2000 Apr; 48(3):227-45. PubMed ID: 10858956
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The p53 response to DNA damage.
    Meek DW
    DNA Repair (Amst); 2004; 3(8-9):1049-56. PubMed ID: 15279792
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.