BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 16601798)

  • 1. Development of ciprofloxacin resistance due to chromosomal mutations induced by 2-nitrofluorene.
    Birosová L; Mikulásová M
    Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub; 2005 Dec; 149(2):401-3. PubMed ID: 16601798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutant prevention concentration of ciprofloxacin and enrofloxacin against Escherichia coli, Salmonella Typhimurium and Pseudomonas aeruginosa.
    Pasquali F; Manfreda G
    Vet Microbiol; 2007 Jan; 119(2-4):304-10. PubMed ID: 16987619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phenolic acids from plant foods can increase or decrease the mutation frequency to antibiotic resistance.
    Birosová L; Mikulásová M; Vaverková S
    J Agric Food Chem; 2007 Dec; 55(25):10183-6. PubMed ID: 17994694
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of environmental pollutants and food processing on the development of antibiotic resistance.
    Birosova L; Mikulasova M
    Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub; 2014 Jun; 158(2):315-20. PubMed ID: 23128813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spontaneous mutation frequency and emergence of ciprofloxacin resistance in Campylobacter jejuni and Campylobacter coli.
    Hänninen ML; Hannula M
    J Antimicrob Chemother; 2007 Dec; 60(6):1251-7. PubMed ID: 17911389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comment on: Quinolone resistance determinant qnrA3 in clinical isolates of Salmonella in 2000-2005 in Hong Kong.
    Ellington MJ; Woodford N
    J Antimicrob Chemother; 2007 Jan; 59(1):157. PubMed ID: 17062611
    [No Abstract]   [Full Text] [Related]  

  • 7. Quinolone resistance determinant qnrA3 in clinical isolates of Salmonella in 2000-2005 in Hong Kong.
    Chu YW; Cheung TK; Ng TK; Tsang D; To WK; Kam KM; Lo JY
    J Antimicrob Chemother; 2006 Oct; 58(4):904-5. PubMed ID: 16943211
    [No Abstract]   [Full Text] [Related]  

  • 8. Analysis of the ciprofloxacin-induced mutations in Salmonella typhimurium.
    Clerch B; Bravo JM; Llagostera M
    Environ Mol Mutagen; 1996; 27(2):110-5. PubMed ID: 8603664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The acquisition of full fluoroquinolone resistance in Salmonella Typhi by accumulation of point mutations in the topoisomerase targets.
    Turner AK; Nair S; Wain J
    J Antimicrob Chemother; 2006 Oct; 58(4):733-40. PubMed ID: 16895934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antimicrobial susceptibility and molecular determinants of quinolone resistance in Neisseria gonorrhoeae isolates from Shanghai.
    Yang Y; Liao M; Gu WM; Bell K; Wu L; Eng NF; Zhang CG; Chen Y; Jolly AM; Dillon JA
    J Antimicrob Chemother; 2006 Oct; 58(4):868-72. PubMed ID: 16880174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro susceptibility of multiple drug resistant Salmonella typhimurium to newer fluroquinolone derivatives.
    Shetty M; Shivananda PG
    Indian J Pathol Microbiol; 1995 Oct; 38(4):365-8. PubMed ID: 9726145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antibiotic resistance.
    Reilly WJ; Munro DS
    Vet Rec; 1997 Jul; 141(1):26. PubMed ID: 9248022
    [No Abstract]   [Full Text] [Related]  

  • 13. Mutations of the gyrA gene of clinical isolates of Salmonella typhimurium and three other Salmonella species leading to decreased susceptibilities to 4-quinolone drugs.
    Brown JC; Thomson CJ; Amyes SG
    J Antimicrob Chemother; 1996 Feb; 37(2):351-6. PubMed ID: 8707746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of transcriptional activators RamA and SoxS on expression of multidrug efflux pumps AcrAB and AcrEF in fluoroquinolone-resistant Salmonella Typhimurium.
    Zheng J; Cui S; Meng J
    J Antimicrob Chemother; 2009 Jan; 63(1):95-102. PubMed ID: 18984645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Presence of quinolone resistance in a strain of Salmonella typhimurium.
    Hof H; Ehrhard I; Tschäpe H
    Eur J Clin Microbiol Infect Dis; 1991 Sep; 10(9):747-9. PubMed ID: 1810728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Positive adaptive state: microarray evaluation of gene expression in Salmonella enterica Typhimurium exposed to nalidixic acid.
    Dowd SE; Killinger-Mann K; Blanton J; San Francisco M; Brashears M
    Foodborne Pathog Dis; 2007; 4(2):187-200. PubMed ID: 17600486
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluoroquinolone susceptibility of S typhimurium DT104.
    Watson PM; Bell GD; Webster CM; Fitzgerald RA
    Vet Rec; 1998 Apr; 142(14):374. PubMed ID: 9587203
    [No Abstract]   [Full Text] [Related]  

  • 18. Molecular characterization of ciprofloxacin-resistant Salmonella enterica serovar Typhi and Paratyphi A causing enteric fever in India.
    Gaind R; Paglietti B; Murgia M; Dawar R; Uzzau S; Cappuccinelli P; Deb M; Aggarwal P; Rubino S
    J Antimicrob Chemother; 2006 Dec; 58(6):1139-44. PubMed ID: 17071955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of the CmeABC efflux pump in the emergence of fluoroquinolone-resistant Campylobacter under selection pressure.
    Yan M; Sahin O; Lin J; Zhang Q
    J Antimicrob Chemother; 2006 Dec; 58(6):1154-9. PubMed ID: 17023497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ciprofloxacin induces mutagenesis to antibiotic resistance independent of UmuC in Streptococcus uberis.
    Varhimo E; Savijoki K; Jefremoff H; Jalava J; Sukura A; Varmanen P
    Environ Microbiol; 2008 Aug; 10(8):2179-83. PubMed ID: 18430157
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.