These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 16602126)

  • 1. Hydrophilic molecularly imprinted poly(hydroxyethyl-methacrylate) polymers.
    Oral E; Peppas NA
    J Biomed Mater Res A; 2006 Jul; 78(1):205-10. PubMed ID: 16602126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel hydrogel membrane based on copoly(hydroxyethyl methacrylate/p-vinylbenzyl-poly(ethylene oxide)) for biomedical applications: properties and drug release characteristics.
    Arica MY; Bayramoglu G; Arica B; Yalçin E; Ito K; Yagci Y
    Macromol Biosci; 2005 Oct; 5(10):983-92. PubMed ID: 16208632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Responsive and recognitive hydrogels using star polymers.
    Oral E; Peppas NA
    J Biomed Mater Res A; 2004 Mar; 68(3):439-47. PubMed ID: 14762923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and characterization of cyclic acetal based degradable hydrogels.
    Kaihara S; Matsumura S; Fisher JP
    Eur J Pharm Biopharm; 2008 Jan; 68(1):67-73. PubMed ID: 17888640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shell-cross-linked micelles containing cationic polymers synthesized via the RAFT process: toward a more biocompatible gene delivery system.
    Zhang L; Nguyen TL; Bernard J; Davis TP; Barner-Kowollik C; Stenzel MH
    Biomacromolecules; 2007 Sep; 8(9):2890-901. PubMed ID: 17691844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of molecularly imprinted polymers using anacardic acid monomers derived from cashew nut shell liquid.
    Philip JY; Buchweishaija J; Mkayula LL; Ye L
    J Agric Food Chem; 2007 Oct; 55(22):8870-6. PubMed ID: 17927136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design, syntheses and evaluation of hemocompatible pegylated-antimicrobial polymers with well-controlled molecular structures.
    Venkataraman S; Zhang Y; Liu L; Yang YY
    Biomaterials; 2010 Mar; 31(7):1751-6. PubMed ID: 20004014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water-compatible molecularly imprinted polymers obtained via high-throughput synthesis and experimental design.
    Dirion B; Cobb Z; Schillinger E; Andersson LI; Sellergren B
    J Am Chem Soc; 2003 Dec; 125(49):15101-9. PubMed ID: 14653745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systematic cross-selectivity study of the factors influencing template receptor interactions in molecularly imprinted nitrogen heterocycles.
    Cummins W; Duggan P; McLoughlin P
    Biosens Bioelectron; 2006 Sep; 22(3):372-80. PubMed ID: 16820289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface imprinted thin polymer film systems with selective recognition for bovine serum albumin.
    Kryscio DR; Peppas NA
    Anal Chim Acta; 2012 Mar; 718():109-15. PubMed ID: 22305905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a pH-responsive drug delivery system for enantioselective-controlled delivery of racemic drugs.
    Suedee R; Jantarat C; Lindner W; Viernstein H; Songkro S; Srichana T
    J Control Release; 2010 Feb; 142(1):122-31. PubMed ID: 19857533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of living/controlled radical polymerization in the formation of improved imprinted polymers.
    Salian VD; Vaughan AD; Byrne ME
    J Mol Recognit; 2012 Jun; 25(6):361-9. PubMed ID: 22641534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-analyte imprinting capability of OMNiMIPs versus traditional molecularly imprinted polymers.
    Meng AC; LeJeune J; Spivak DA
    J Mol Recognit; 2009; 22(2):121-8. PubMed ID: 19195014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Via zinc(II) protoporphyrin to the synthesis of poly(ZnPP-MAA-EGDMA) for the imprinting and selective binding of bilirubin.
    Chou SK; Syu MJ
    Biomaterials; 2009 Mar; 30(7):1255-62. PubMed ID: 19100614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stability and nonfouling properties of poly(poly(ethylene glycol) methacrylate) brushes under cell culture conditions.
    Tugulu S; Klok HA
    Biomacromolecules; 2008 Mar; 9(3):906-12. PubMed ID: 18260637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-covalent nano-adducts of co-poly(ester amide) and poly(ethylene glycol): preparation, characterization and model drug-release studies.
    Legashvili I; Nepharidze N; Katsarava R; Sannigrahi B; Khan IM
    J Biomater Sci Polym Ed; 2007; 18(6):673-85. PubMed ID: 17623550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Zero-order therapeutic release from imprinted hydrogel contact lenses within in vitro physiological ocular tear flow.
    Ali M; Horikawa S; Venkatesh S; Saha J; Hong JW; Byrne ME
    J Control Release; 2007 Dec; 124(3):154-62. PubMed ID: 17964678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of monofunctional and multifunctional monomers in phosphate binding molecularly imprinted polymers.
    Wu X; Goswami K; Shimizu KD
    J Mol Recognit; 2008; 21(6):410-8. PubMed ID: 18698665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ionic effect on the binding of bilirubin to the imprinted poly(methacrylic acid-co-ethylene glycol dimethylacrylate).
    Syu MJ; Nian YM; Chang YS; Lin XZ; Shiesh SC; Chou TC
    J Chromatogr A; 2006 Jul; 1122(1-2):54-62. PubMed ID: 16674963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecularly imprinted polymers for corticosteroids: analysis of binding selectivity.
    Baggiani C; Baravalle P; Giovannoli C; Anfossi L; Giraudi G
    Biosens Bioelectron; 2010 Oct; 26(2):590-5. PubMed ID: 20688510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.