These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 16602167)

  • 41. Is it more effective for highly trained swimmers to live and train at 1200 m than at 1850 m in terms of performance and haematological benefits?
    Roels B; Hellard P; Schmitt L; Robach P; Richalet JP; Millet GP
    Br J Sports Med; 2006 Feb; 40(2):e4. PubMed ID: 16431991
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Whichever the initial training status, any increase in velocity at lactate threshold appears as a major factor in improved time to exhaustion at the same severe velocity after training.
    Demarle AP; Heugas AM; Slawinski JJ; Tricot VM; Koralsztein JP; Billat VL
    Arch Physiol Biochem; 2003 Apr; 111(2):167-76. PubMed ID: 12919004
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Chronic Physiological Effects of Swim Training Interventions in Non-Elite Swimmers: A Systematic Review and Meta-Analysis.
    Lahart IM; Metsios GS
    Sports Med; 2018 Feb; 48(2):337-359. PubMed ID: 29086218
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Intermittent runs at the velocity associated with maximal oxygen uptake enables subjects to remain at maximal oxygen uptake for a longer time than intense but submaximal runs.
    Billat VL; Slawinski J; Bocquet V; Demarle A; Lafitte L; Chassaing P; Koralsztein JP
    Eur J Appl Physiol; 2000 Feb; 81(3):188-96. PubMed ID: 10638376
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Oxygen uptake kinetics and energy system's contribution around maximal lactate steady state swimming intensity.
    Pelarigo JG; Machado L; Fernandes RJ; Greco CC; Vilas-Boas JP
    PLoS One; 2017; 12(2):e0167263. PubMed ID: 28245246
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Physiological responses of triathletes to maximal swimming, cycling, and running.
    Kohrt WM; Morgan DW; Bates B; Skinner JS
    Med Sci Sports Exerc; 1987 Feb; 19(1):51-5. PubMed ID: 3821455
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of run-training and swim-training at similar absolute intensities on treadmill VO2max.
    Lieber DC; Lieber RL; Adams WC
    Med Sci Sports Exerc; 1989 Dec; 21(6):655-61. PubMed ID: 2626088
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effects of ageing and training on maximal heart rate and VO2max.
    Betros CL; McKeever KH; Kearns CF; Malinowski K
    Equine Vet J Suppl; 2002 Sep; (34):100-5. PubMed ID: 12405667
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Blood lactate removal during recovery at various intensities below the individual anaerobic threshold in triathletes.
    Baldari C; Videira M; Madeira F; Sergio J; Guidetti L
    J Sports Med Phys Fitness; 2005 Dec; 45(4):460-6. PubMed ID: 16446676
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effectiveness of low-intensity endurance training.
    Meyer T; Auracher M; Heeg K; Urhausen A; Kindermann W
    Int J Sports Med; 2007 Jan; 28(1):33-9. PubMed ID: 17213964
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of protocol on determination of velocity at VO2 max and on its time to exhaustion.
    Billat VL; Hill DW; Pinoteau J; Petit B; Koralsztein JP
    Arch Physiol Biochem; 1996; 104(3):313-21. PubMed ID: 8793023
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effect of concurrent endurance and circuit resistance training sequence on muscular strength and power development.
    Chtara M; Chaouachi A; Levin GT; Chaouachi M; Chamari K; Amri M; Laursen PB
    J Strength Cond Res; 2008 Jul; 22(4):1037-45. PubMed ID: 18545210
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of high-intensity interval training on cardiovascular function, VO2max, and muscular force.
    Astorino TA; Allen RP; Roberson DW; Jurancich M
    J Strength Cond Res; 2012 Jan; 26(1):138-45. PubMed ID: 22201691
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Group training in adolescent runners: influence on VO2max and 5-km race performance.
    Loprinzi PD; Cardinal BJ; Karp JR; Brodowicz GR
    J Strength Cond Res; 2011 Oct; 25(10):2696-703. PubMed ID: 21912347
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of high-intensity submaximal work, with or without rest, on subsequent VO2max.
    Judelson DA; Rundell KW; Beck KC; King TM; Laclair KL
    Med Sci Sports Exerc; 2004 Feb; 36(2):292-6. PubMed ID: 14767253
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Percentages of maximal heart rate, heart rate reserve and VO2max for determining endurance training intensity in male runners.
    Weltman A; Snead D; Seip R; Schurrer R; Weltman J; Rutt R; Rogol A
    Int J Sports Med; 1990 Jun; 11(3):218-22. PubMed ID: 2373580
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Ventilatory and Physiological Responses in Swimmers Below and Above Their Maximal Lactate Steady State.
    Espada MC; Reis JF; Almeida TF; Bruno PM; Vleck VE; Alves FB
    J Strength Cond Res; 2015 Oct; 29(10):2836-43. PubMed ID: 25148466
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Increased training intensity effects on plasma lactate, ventilatory threshold, and endurance.
    Acevedo EO; Goldfarb AH
    Med Sci Sports Exerc; 1989 Oct; 21(5):563-8. PubMed ID: 2607946
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Comparison of submaximal front crawl and breast stroke swimming in relation to energy expenditure].
    Sugiyama K; Katamoto S
    Ann Physiol Anthropol; 1992 Nov; 11(6):635-40. PubMed ID: 1476565
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Blood lactate and metabolic responses to controlled frequency breathing during graded swimming.
    West SA; Drummond MJ; Vanness JM; Ciccolella ME
    J Strength Cond Res; 2005 Nov; 19(4):772-6. PubMed ID: 16287367
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.