BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 16602574)

  • 21. Noise-robust speech recognition through auditory feature detection and spike sequence decoding.
    Schafer PB; Jin DZ
    Neural Comput; 2014 Mar; 26(3):523-56. PubMed ID: 24320849
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Automatic speech recognition in cocktail-party situations: a specific training for separated speech.
    Marti A; Cobos M; Lopez JJ
    J Acoust Soc Am; 2012 Feb; 131(2):1529-35. PubMed ID: 22352522
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Female voice communications in high level aircraft cockpit noises--part II: vocoder and automatic speech recognition systems.
    Nixon C; Anderson T; Morris L; McCavitt A; McKinley R; Yeager D; McDaniel M
    Aviat Space Environ Med; 1998 Nov; 69(11):1087-94. PubMed ID: 9819167
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A spectral/temporal method for robust fundamental frequency tracking.
    Zahorian SA; Hu H
    J Acoust Soc Am; 2008 Jun; 123(6):4559-71. PubMed ID: 18537404
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Telephony-based voice pathology assessment using automated speech analysis.
    Moran RJ; Reilly RB; de Chazal P; Lacy PD
    IEEE Trans Biomed Eng; 2006 Mar; 53(3):468-77. PubMed ID: 16532773
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Acoustic censusing using automatic vocalization classification and identity recognition.
    Adi K; Johnson MT; Osiejuk TS
    J Acoust Soc Am; 2010 Feb; 127(2):874-83. PubMed ID: 20136210
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Speech recognition in noise: estimating effects of compressive nonlinearities in the basilar-membrane response.
    Horwitz AR; Ahlstrom JB; Dubno JR
    Ear Hear; 2007 Sep; 28(5):682-93. PubMed ID: 17804982
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The role of binary mask patterns in automatic speech recognition in background noise.
    Narayanan A; Wang D
    J Acoust Soc Am; 2013 May; 133(5):3083-93. PubMed ID: 23654411
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Acoustic analysis and detection of hypernasality using a group delay function.
    Vijayalakshmi P; Reddy MR; O'Shaughnessy D
    IEEE Trans Biomed Eng; 2007 Apr; 54(4):621-9. PubMed ID: 17405369
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Syllable-based speech recognition using EMG.
    Lopez-Larraz E; Mozos OM; Antelis JM; Minguez J
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4699-702. PubMed ID: 21096011
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Speech perception in individuals with auditory neuropathy.
    Zeng FG; Liu S
    J Speech Lang Hear Res; 2006 Apr; 49(2):367-80. PubMed ID: 16671850
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Estimation of vowel recognition with cochlear implant simulations.
    Liu C; Fu QJ
    IEEE Trans Biomed Eng; 2007 Jan; 54(1):74-81. PubMed ID: 17260858
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intelligibility of speech in noise at high presentation levels: effects of hearing loss and frequency region.
    Summers V; Cord MT
    J Acoust Soc Am; 2007 Aug; 122(2):1130-7. PubMed ID: 17672659
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Unintelligible low-frequency sound enhances simulated cochlear-implant speech recognition in noise.
    Chang JE; Bai JY; Zeng FG
    IEEE Trans Biomed Eng; 2006 Dec; 53(12 Pt 2):2598-601. PubMed ID: 17152439
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Swedish version of the Hearing In Noise Test (HINT) for measurement of speech recognition.
    Hällgren M; Larsby B; Arlinger S
    Int J Audiol; 2006 Apr; 45(4):227-37. PubMed ID: 16684704
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Deep Denoising Autoencoder Approach to Improving the Intelligibility of Vocoded Speech in Cochlear Implant Simulation.
    Lai YH; Chen F; Wang SS; Lu X; Tsao Y; Lee CH
    IEEE Trans Biomed Eng; 2017 Jul; 64(7):1568-1578. PubMed ID: 28113304
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Speech signal modification to increase intelligibility in noisy environments.
    Yoo SD; Boston JR; El-Jaroudi A; Li CC; Durrant JD; Kovacyk K; Shaiman S
    J Acoust Soc Am; 2007 Aug; 122(2):1138-49. PubMed ID: 17672660
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [A research in speech endpoint detection based on boxes-coupling generalization dimension].
    Wang Z; Yang C; Wu W; Fan Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Jun; 25(3):536-41. PubMed ID: 18693426
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analyzing phonetic confusions using formal concept analysis.
    Peláez-Moreno C; García-Moral AI; Valverde-Albacete FJ
    J Acoust Soc Am; 2010 Sep; 128(3):1377-90. PubMed ID: 20815472
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of sEMG sensors and algorithms for silent speech recognition.
    Meltzner GS; Heaton JT; Deng Y; De Luca G; Roy SH; Kline JC
    J Neural Eng; 2018 Aug; 15(4):046031. PubMed ID: 29855428
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.