These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 16602595)
1. Training of a leaning agent for navigation--inspired by brain-machine interface. Kitamura T; Nishino D IEEE Trans Syst Man Cybern B Cybern; 2006 Apr; 36(2):353-65. PubMed ID: 16602595 [TBL] [Abstract][Full Text] [Related]
2. Codevelopmental learning between human and humanoid robot using a dynamic neural-network model. Tani J; Nishimoto R; Namikawa J; Ito M IEEE Trans Syst Man Cybern B Cybern; 2008 Feb; 38(1):43-59. PubMed ID: 18270081 [TBL] [Abstract][Full Text] [Related]
3. SLAM algorithm applied to robotics assistance for navigation in unknown environments. Cheein FA; Lopez N; Soria CM; di Sciascio FA; Pereira FL; Carelli R J Neuroeng Rehabil; 2010 Feb; 7():10. PubMed ID: 20163735 [TBL] [Abstract][Full Text] [Related]
4. A telepresence mobile robot controlled with a noninvasive brain-computer interface. Escolano C; Antelis JM; Minguez J IEEE Trans Syst Man Cybern B Cybern; 2012 Jun; 42(3):793-804. PubMed ID: 22180512 [TBL] [Abstract][Full Text] [Related]
5. Control of a humanoid robot by a noninvasive brain-computer interface in humans. Bell CJ; Shenoy P; Chalodhorn R; Rao RP J Neural Eng; 2008 Jun; 5(2):214-20. PubMed ID: 18483450 [TBL] [Abstract][Full Text] [Related]
6. Goal-recognition-based adaptive brain-computer interface for navigating immersive robotic systems. Abu-Alqumsan M; Ebert F; Peer A J Neural Eng; 2017 Jun; 14(3):036024. PubMed ID: 28294109 [TBL] [Abstract][Full Text] [Related]
7. Goal-directed autonomous navigation of mobile robot based on the principle of neuromodulation. Wang D; Si W; Luo Y; Wang H; Ma T Network; 2019; 30(1-4):79-106. PubMed ID: 31564179 [TBL] [Abstract][Full Text] [Related]
8. BMI cyberworkstation: enabling dynamic data-driven brain-machine interface research through cyberinfrastructure. Zhao M; Rattanatamrong P; DiGiovanna J; Mahmoudi B; Figueiredo RJ; Sanchez JC; Príncipe JC; Fortes JA Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():646-9. PubMed ID: 19162738 [TBL] [Abstract][Full Text] [Related]
9. Incremental learning of tasks from user demonstrations, past experiences, and vocal comments. Pardowitz M; Knoop S; Dillmann R; Zöllner RD IEEE Trans Syst Man Cybern B Cybern; 2007 Apr; 37(2):322-32. PubMed ID: 17416160 [TBL] [Abstract][Full Text] [Related]
10. The balance between initial training and lifelong adaptation in evolving robot controllers. Walker JH; Garrett SM; Wilson MS IEEE Trans Syst Man Cybern B Cybern; 2006 Apr; 36(2):423-32. PubMed ID: 16602601 [TBL] [Abstract][Full Text] [Related]
11. Paralyzed subject controls telepresence mobile robot using novel sEMG brain-computer interface: case study. Lyons KR; Joshi SS IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650428. PubMed ID: 24187246 [TBL] [Abstract][Full Text] [Related]
12. A brain-machine interface to navigate a mobile robot in a planar workspace: enabling humans to fly simulated aircraft with EEG. Akce A; Johnson M; Dantsker O; Bretl T IEEE Trans Neural Syst Rehabil Eng; 2013 Mar; 21(2):306-18. PubMed ID: 23268384 [TBL] [Abstract][Full Text] [Related]
13. Toward a biomimetic, bidirectional, brain machine interface. Fagg AH; Hatsopoulos NG; London BM; Reimer J; Solla SA; Wang D; Miller LE Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():3376-80. PubMed ID: 19963797 [TBL] [Abstract][Full Text] [Related]
14. Computational analysis in vitro: dynamics and plasticity of a neuro-robotic system. Karniel A; Kositsky M; Fleming KM; Chiappalone M; Sanguineti V; Alford ST; Mussa-Ivaldi FA J Neural Eng; 2005 Sep; 2(3):S250-65. PubMed ID: 16135888 [TBL] [Abstract][Full Text] [Related]
15. Brain-Machine Interface-Based Rat-Robot Behavior Control. Zhang J; Xu K; Zhang S; Wang Y; Zheng N; Pan G; Chen W; Wu Z; Zheng X Adv Exp Med Biol; 2019; 1101():123-147. PubMed ID: 31729674 [TBL] [Abstract][Full Text] [Related]
16. Line of sight robot navigation toward a moving goal. Belkhouche F; Belkhouche B; Rastgoufard P IEEE Trans Syst Man Cybern B Cybern; 2006 Apr; 36(2):255-67. PubMed ID: 16602589 [TBL] [Abstract][Full Text] [Related]
17. A new active visual system for humanoid robots. Xu D; Li YF; Tan M; Shen Y IEEE Trans Syst Man Cybern B Cybern; 2008 Apr; 38(2):320-30. PubMed ID: 18348917 [TBL] [Abstract][Full Text] [Related]
18. Using machine learning to blend human and robot controls for assisted wheelchair navigation. Goil A; Derry M; Argall BD IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650454. PubMed ID: 24187271 [TBL] [Abstract][Full Text] [Related]
19. Brain-Machine Interface control of a robot arm using actor-critic rainforcement learning. Pohlmeyer EA; Mahmoudi B; Geng S; Prins N; Sanchez JC Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4108-11. PubMed ID: 23366831 [TBL] [Abstract][Full Text] [Related]
20. A biologically inspired meta-control navigation system for the Psikharpax rat robot. Caluwaerts K; Staffa M; N'Guyen S; Grand C; Dollé L; Favre-Félix A; Girard B; Khamassi M Bioinspir Biomim; 2012 Jun; 7(2):025009. PubMed ID: 22617382 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]