BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 16602692)

  • 1. Proteomic analysis reveals novel molecules involved in insulin signaling pathway.
    Wang Y; Li R; Du D; Zhang C; Yuan H; Zeng R; Chen Z
    J Proteome Res; 2006 Apr; 5(4):846-55. PubMed ID: 16602692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomic analysis of Src family kinases signaling complexes in Golgi/endosomal fractions using a site-selective anti-phosphotyrosine antibody: identification of LRP1-insulin receptor complexes.
    Bilodeau N; Fiset A; Boulanger MC; Bhardwaj S; Winstall E; Lavoie JN; Faure RL
    J Proteome Res; 2010 Feb; 9(2):708-17. PubMed ID: 19947650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alpha 1,3-fucosyltransferase-VII regulates the signaling molecules of the insulin receptor pathway.
    Wang QY; Zhang Y; Chen HJ; Shen ZH; Chen HL
    FEBS J; 2007 Jan; 274(2):526-38. PubMed ID: 17229154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteomic analysis of acute promyelocytic leukemia: PML-RARalpha leads to decreased phosphorylation of OP18 at serine 63.
    Zada AA; Geletu MH; Pulikkan JA; Müller-Tidow C; Reddy VA; Christopeit M; Hiddemann WD; Behre HM; Tenen DG; Behre G
    Proteomics; 2006 Nov; 6(21):5705-19. PubMed ID: 17001604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphoproteome analysis of HeLa cells using stable isotope labeling with amino acids in cell culture (SILAC).
    Amanchy R; Kalume DE; Iwahori A; Zhong J; Pandey A
    J Proteome Res; 2005; 4(5):1661-71. PubMed ID: 16212419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insulin signaling in the yeast Saccharomyces cerevisiae. 3. Induction of protein phosphorylation by human insulin.
    Müller G; Rouveyre N; Upshon C; Bandlow W
    Biochemistry; 1998 Jun; 37(24):8705-13. PubMed ID: 9628732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compartmentalization and in vivo insulin-induced translocation of the insulin-signaling inhibitor Grb14 in rat liver.
    Desbuquois B; Béréziat V; Authier F; Girard J; Burnol AF
    FEBS J; 2008 Sep; 275(17):4363-77. PubMed ID: 18657188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of dynamic tyrosine phosphoproteome in LFA-1 triggered migrating T-cells.
    Verma NK; Dempsey E; Freeley M; Botting CH; Long A; Kelleher D; Volkov Y
    J Cell Physiol; 2011 Jun; 226(6):1489-98. PubMed ID: 20945386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large-scale proteomic analysis of tyrosine-phosphorylation induced by T-cell receptor or B-cell receptor activation reveals new signaling pathways.
    Matsumoto M; Oyamada K; Takahashi H; Sato T; Hatakeyama S; Nakayama KI
    Proteomics; 2009 Jul; 9(13):3549-63. PubMed ID: 19609962
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immunoaffinity profiling of tyrosine phosphorylation in cancer cells.
    Rush J; Moritz A; Lee KA; Guo A; Goss VL; Spek EJ; Zhang H; Zha XM; Polakiewicz RD; Comb MJ
    Nat Biotechnol; 2005 Jan; 23(1):94-101. PubMed ID: 15592455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphoprotein profiling of erythropoietin receptor- dependent pathways using different proteomic strategies.
    Körbel S; Büchse T; Prietzsch H; Sasse T; Schümann M; Krause E; Brock J; Bittorf T
    Proteomics; 2005 Jan; 5(1):91-100. PubMed ID: 15672454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative proteomic approaches for studying phosphotyrosine signaling.
    Ding SJ; Qian WJ; Smith RD
    Expert Rev Proteomics; 2007 Feb; 4(1):13-23. PubMed ID: 17288512
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of new Golgi complex specific proteins by direct organelle proteomic analysis.
    Takatalo MS; Kouvonen P; Corthals G; Nyman TA; Rönnholm RH
    Proteomics; 2006 Jun; 6(12):3502-8. PubMed ID: 16691549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Systemic analysis of tyrosine phosphorylated proteins in angiopoietin-1 induced signaling pathway of endothelial cells.
    Kim YM; Seo J; Kim YH; Jeong J; Joo HJ; Lee DH; Koh GY; Lee KJ
    J Proteome Res; 2007 Aug; 6(8):3278-90. PubMed ID: 17595127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subcellular fractionation reveals proteins involved in insulin signaling.
    Cottingham K
    J Proteome Res; 2006 Apr; 5(4):739. PubMed ID: 16625738
    [No Abstract]   [Full Text] [Related]  

  • 16. Insulin receptor kinase-independent signaling via tyrosine phosphorylation of phosphatase PHLPP1.
    Zhang M; Riedel H
    J Cell Biochem; 2009 May; 107(1):65-75. PubMed ID: 19277985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global proteome analysis of a human gastric carcinoma.
    Tomlinson AJ; Hincapie M; Morris GE; Chicz RM
    Electrophoresis; 2002 Sep; 23(18):3233-40. PubMed ID: 12298095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The N-terminal SH2 domain of the tyrosine phosphatase, SHP-2, is essential for Jak2-dependent signaling via the angiotensin II type AT1 receptor.
    Godeny MD; Sayyah J; VonDerLinden D; Johns M; Ostrov DA; Caldwell-Busby J; Sayeski PP
    Cell Signal; 2007 Mar; 19(3):600-9. PubMed ID: 17027227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphoproteome study reveals Hsp27 as a novel signaling molecule involved in GDNF-induced neurite outgrowth.
    Hong Z; Zhang QY; Liu J; Wang ZQ; Zhang Y; Xiao Q; Lu J; Zhou HY; Chen SD
    J Proteome Res; 2009 Jun; 8(6):2768-87. PubMed ID: 19290620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative proteomic analysis of phosphotyrosine-mediated cellular signaling networks.
    Zhang Y; Wolf-Yadlin A; White FM
    Methods Mol Biol; 2007; 359():203-12. PubMed ID: 17484120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.