BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 16602695)

  • 1. Conservation of intrinsic disorder in protein domains and families: I. A database of conserved predicted disordered regions.
    Chen JW; Romero P; Uversky VN; Dunker AK
    J Proteome Res; 2006 Apr; 5(4):879-87. PubMed ID: 16602695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conservation of intrinsic disorder in protein domains and families: II. functions of conserved disorder.
    Chen JW; Romero P; Uversky VN; Dunker AK
    J Proteome Res; 2006 Apr; 5(4):888-98. PubMed ID: 16602696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intrinsically disordered domains: Sequence ➔ disorder ➔ function relationships.
    Zhou J; Oldfield CJ; Yan W; Shen B; Dunker AK
    Protein Sci; 2019 Sep; 28(9):1652-1663. PubMed ID: 31299122
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An integrated approach to the analysis and modeling of protein sequences and structures. III. A comparative study of sequence conservation in protein structural families using multiple structural alignments.
    Yang AS; Honig B
    J Mol Biol; 2000 Aug; 301(3):691-711. PubMed ID: 10966778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intrinsic disorder in the Protein Data Bank.
    Le Gall T; Romero PR; Cortese MS; Uversky VN; Dunker AK
    J Biomol Struct Dyn; 2007 Feb; 24(4):325-42. PubMed ID: 17206849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting reliable regions in protein alignments from sequence profiles.
    Tress ML; Jones D; Valencia A
    J Mol Biol; 2003 Jul; 330(4):705-18. PubMed ID: 12850141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Length-dependent prediction of protein intrinsic disorder.
    Peng K; Radivojac P; Vucetic S; Dunker AK; Obradovic Z
    BMC Bioinformatics; 2006 Apr; 7():208. PubMed ID: 16618368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Short Linear Motifs recognized by SH2, SH3 and Ser/Thr Kinase domains are conserved in disordered protein regions.
    Ren S; Uversky VN; Chen Z; Dunker AK; Obradovic Z
    BMC Genomics; 2008 Sep; 9 Suppl 2(Suppl 2):S26. PubMed ID: 18831792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using CLUSTAL for multiple sequence alignments.
    Higgins DG; Thompson JD; Gibson TJ
    Methods Enzymol; 1996; 266():383-402. PubMed ID: 8743695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Grouping of amino acids and recognition of protein structurally conserved regions by reduced alphabets of amino acids.
    Li J; Wang W
    Sci China C Life Sci; 2007 Jun; 50(3):392-402. PubMed ID: 17609897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AL2CO: calculation of positional conservation in a protein sequence alignment.
    Pei J; Grishin NV
    Bioinformatics; 2001 Aug; 17(8):700-12. PubMed ID: 11524371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HomologyPlot: searching for homology to a family of proteins using a database of unique conserved patterns.
    Parker JM; Hodges RS
    J Comput Aided Mol Des; 1994 Apr; 8(2):193-210. PubMed ID: 8064334
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Fast Alignment-Free Approach for De Novo Detection of Protein Conserved Regions.
    Abnousi A; Broschat SL; Kalyanaraman A
    PLoS One; 2016; 11(8):e0161338. PubMed ID: 27552220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving sequence alignments for intrinsically disordered proteins.
    Radivojac P; Obradovic Z; Brown CJ; Dunker AK
    Pac Symp Biocomput; 2002; ():589-600. PubMed ID: 11928510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effective protein sequence comparison.
    Pearson WR
    Methods Enzymol; 1996; 266():227-58. PubMed ID: 8743688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Environment-specific amino acid substitution tables: tertiary templates and prediction of protein folds.
    Overington J; Donnelly D; Johnson MS; Sali A; Blundell TL
    Protein Sci; 1992 Feb; 1(2):216-26. PubMed ID: 1304904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thousands of proteins likely to have long disordered regions.
    Romero P; Obradovic Z; Kissinger CR; Villafranca JE; Garner E; Guilliot S; Dunker AK
    Pac Symp Biocomput; 1998; ():437-48. PubMed ID: 9697202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HMMerThread: detecting remote, functional conserved domains in entire genomes by combining relaxed sequence-database searches with fold recognition.
    Bradshaw CR; Surendranath V; Henschel R; Mueller MS; Habermann BH
    PLoS One; 2011 Mar; 6(3):e17568. PubMed ID: 21423752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. BEAUTY: an enhanced BLAST-based search tool that integrates multiple biological information resources into sequence similarity search results.
    Worley KC; Wiese BA; Smith RF
    Genome Res; 1995 Sep; 5(2):173-84. PubMed ID: 9132271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Markov models of amino acid substitution to study proteins with intrinsically disordered regions.
    Szalkowski AM; Anisimova M
    PLoS One; 2011; 6(5):e20488. PubMed ID: 21647374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.