These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 1660314)

  • 1. Novel infrared spectroscopic method for the determination of crystallinity of hydroxyapatite minerals.
    Pleshko N; Boskey A; Mendelsohn R
    Biophys J; 1991 Oct; 60(4):786-93. PubMed ID: 1660314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fourier transform infrared spectroscopy of the solution-mediated conversion of amorphous calcium phosphate to hydroxyapatite: new correlations between X-ray diffraction and infrared data.
    Gadaleta SJ; Paschalis EP; Betts F; Mendelsohn R; Boskey AL
    Calcif Tissue Int; 1996 Jan; 58(1):9-16. PubMed ID: 8825233
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ analysis of mineral content and crystallinity in bone using infrared micro-spectroscopy of the nu(4) PO(4)(3-) vibration.
    Miller LM; Vairavamurthy V; Chance MR; Mendelsohn R; Paschalis EP; Betts F; Boskey AL
    Biochim Biophys Acta; 2001 Jul; 1527(1-2):11-9. PubMed ID: 11420138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measures of Bone Mineral Carbonate Content and Mineral Maturity/Crystallinity for FT-IR and Raman Spectroscopic Imaging Differentially Relate to Physical-Chemical Properties of Carbonate-Substituted Hydroxyapatite.
    Taylor EA; Mileti CJ; Ganesan S; Kim JH; Donnelly E
    Calcif Tissue Int; 2021 Jul; 109(1):77-91. PubMed ID: 33710382
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Infrared microscopic imaging of bone: spatial distribution of CO3(2-).
    Ou-Yang H; Paschalis EP; Mayo WE; Boskey AL; Mendelsohn R
    J Bone Miner Res; 2001 May; 16(5):893-900. PubMed ID: 11341334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resolution-enhanced Fourier transform infrared spectroscopy study of the environment of phosphate ions in the early deposits of a solid phase of calcium-phosphate in bone and enamel, and their evolution with age. I: Investigations in the upsilon 4 PO4 domain.
    Rey C; Shimizu M; Collins B; Glimcher MJ
    Calcif Tissue Int; 1990 Jun; 46(6):384-94. PubMed ID: 2364326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validated Approaches for Quantification of Bone Mineral Crystallinity Using Transmission Fourier Transform Infrared (FT-IR), Attenuated Total Reflection (ATR) FT-IR, and Raman Spectroscopy.
    Querido W; Ailavajhala R; Padalkar M; Pleshko N
    Appl Spectrosc; 2018 Nov; 72(11):1581-1593. PubMed ID: 29972319
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fourier transform infrared microscopy of calcified turkey leg tendon.
    Gadaleta SJ; Camacho NP; Mendelsohn R; Boskey AL
    Calcif Tissue Int; 1996 Jan; 58(1):17-23. PubMed ID: 8825234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystallographic behaviour of fluoridated hydroxyapatites containing Mg2+ and CO3(2-) ions.
    Okazaki M
    Biomaterials; 1991 Nov; 12(9):831-5. PubMed ID: 1764553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation, analysis, and characterization of carbonated apatites.
    Nelson DG; Featherstone JD
    Calcif Tissue Int; 1982; 34 Suppl 2():S69-81. PubMed ID: 6293677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FT-IR spectroscopy of fluoro-substituted hydroxyapatite: strengths and limitations.
    Rintoul L; Wentrup-Byrne E; Suzuki S; Grøndahl L
    J Mater Sci Mater Med; 2007 Sep; 18(9):1701-9. PubMed ID: 17483886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facile synthesis of both needle-like and spherical hydroxyapatite nanoparticles: effect of synthetic temperature and calcination on morphology, crystallite size and crystallinity.
    Wijesinghe WP; Mantilaka MM; Premalal EV; Herath HM; Mahalingam S; Edirisinghe M; Rajapakse RP; Rajapakse RM
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():83-90. PubMed ID: 25063096
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison between infrared and Raman spectroscopic analysis of maturing rabbit cortical bone.
    Turunen MJ; Saarakkala S; Rieppo L; Helminen HJ; Jurvelin JS; Isaksson H
    Appl Spectrosc; 2011 Jun; 65(6):595-603. PubMed ID: 21639980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Affinity binding phenomena of DNA onto apatite crystals.
    Okazaki M; Yoshida Y; Yamaguchi S; Kaneno M; Elliott JC
    Biomaterials; 2001 Sep; 22(18):2459-64. PubMed ID: 11516076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Infrared spectroscopic characterization of carbonated apatite: a combined experimental and computational study.
    Ren F; Ding Y; Leng Y
    J Biomed Mater Res A; 2014 Feb; 102(2):496-505. PubMed ID: 23533194
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Specific physicochemical properties of apatites. 9. Organic phosphate ester monomer as a source of P].
    Okazaki M; Hattori M; Takahashi J; Kimura H
    Shika Zairyo Kikai; 1989 Nov; 8(6):797-802. PubMed ID: 2489595
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vibrational study and fluorescence bands in the FT-Raman spectra of Ca(10-x)Pb(x)(PO4)6(OH)2 compounds.
    Hadrich A; Lautié A; Mhiri T
    Spectrochim Acta A Mol Biomol Spectrosc; 2001 Jul; 57(8):1673-81. PubMed ID: 11471720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of Egg Shell Derived Carbonated Apatite Nanocarrier System for Drug Delivery.
    Jayasree R; Madhumathi K; Rana D; Ramalingam M; Nankar RP; Doble M; Kumar TSS
    J Nanosci Nanotechnol; 2018 Apr; 18(4):2318-2324. PubMed ID: 29442898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of X-ray radiation on the mineral/organic matrix interaction of bone tissue: an FT-IR microscopic investigation.
    Hübner W; Blume A; Pushnjakova R; Dekhtyar Y; Hein HJ
    Int J Artif Organs; 2005 Jan; 28(1):66-73. PubMed ID: 15742312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Influence of acid buffer on the crystallinity of enamel apatite].
    Sobue E
    Shoni Shikagaku Zasshi; 1989; 27(2):341-54. PubMed ID: 2562254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.