BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 16603227)

  • 1. Arbuscular mycorrhizae increase the arsenic translocation factor in the As hyperaccumulating fern Pteris vittata L.
    Trotta A; Falaschi P; Cornara L; Minganti V; Fusconi A; Drava G; Berta G
    Chemosphere; 2006 Sep; 65(1):74-81. PubMed ID: 16603227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of arbuscular mycorrhizal inoculation on uranium and arsenic accumulation by Chinese brake fern (Pteris vittata L.) from a uranium mining-impacted soil.
    Chen BD; Zhu YG; Smith FA
    Chemosphere; 2006 Mar; 62(9):1464-73. PubMed ID: 16084565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intraspecific differences of arbuscular mycorrhizal fungi in their impacts on arsenic accumulation by Pteris vittata L.
    Wu FY; Ye ZH; Wong MH
    Chemosphere; 2009 Aug; 76(9):1258-64. PubMed ID: 19535126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteomic analysis of Pteris vittata fronds: two arbuscular mycorrhizal fungi differentially modulate protein expression under arsenic contamination.
    Bona E; Cattaneo C; Cesaro P; Marsano F; Lingua G; Cavaletto M; Berta G
    Proteomics; 2010 Nov; 10(21):3811-34. PubMed ID: 20957753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mycorrhizae increase arsenic uptake by the hyperaccumulator Chinese brake fern (Pteris vittata L.).
    Al Agely A; Sylvia DM; Ma LQ
    J Environ Qual; 2005; 34(6):2181-6. PubMed ID: 16275719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of arbuscular mycorrhizal fungi and phosphate amendement on arsenic uptake, accumulation and growth of Pteris vittata in As-contaminated soil.
    Leung HM; Wu FY; Cheung KC; Ye ZH; Wong MH
    Int J Phytoremediation; 2010; 12(4):384-403. PubMed ID: 20734915
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions of mycorrhizal fungi with Pteris vittata (As hyperaccumulator) in As-contaminated soils.
    Leung HM; Ye ZH; Wong MH
    Environ Pollut; 2006 Jan; 139(1):1-8. PubMed ID: 16039023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of the arbuscular mycorrhizal fungus Glomus mosseae on uptake of arsenate by the As hyperaccumulator fern Pteris vittata L.
    Liu Y; Zhu YG; Chen BD; Christie P; Li XL
    Mycorrhiza; 2005 May; 15(3):187-92. PubMed ID: 15309589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arsenic speciation, and arsenic and phosphate distribution in arsenic hyperaccumulator Pteris vittata L. and non-hyperaccumulator Pteris ensiformis L.
    Singh N; Ma LQ
    Environ Pollut; 2006 May; 141(2):238-46. PubMed ID: 16257102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antioxidative responses to arsenic in the arsenic-hyperaccumulator Chinese brake fern (Pteris vittata L.).
    Cao X; Ma LQ; Tu C
    Environ Pollut; 2004; 128(3):317-25. PubMed ID: 14720474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of arsenic on concentration and distribution of nutrients in the fronds of the arsenic hyperaccumulator Pteris vittata L.
    Tu C; Ma LQ
    Environ Pollut; 2005 May; 135(2):333-40. PubMed ID: 15734593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Absorption of foliar-applied arsenic by the arsenic hyperaccumulating fern (Pteris vittata L.).
    Bondada BR; Tu S; Ma LQ
    Sci Total Environ; 2004 Oct; 332(1-3):61-70. PubMed ID: 15336891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteomic analysis as a tool for investigating arsenic stress in Pteris vittata roots colonized or not by arbuscular mycorrhizal symbiosis.
    Bona E; Marsano F; Massa N; Cattaneo C; Cesaro P; Argese E; Sanità di Toppi L; Cavaletto M; Berta G
    J Proteomics; 2011 Aug; 74(8):1338-50. PubMed ID: 21457805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of the arbuscular mycorrhizal fungus Glomus mosseae on growth and metal uptake by four plant species in copper mine tailings.
    Chen BD; Zhu YG; Duan J; Xiao XY; Smith SE
    Environ Pollut; 2007 May; 147(2):374-80. PubMed ID: 16764975
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The arbuscular mycorrhizal fungus Glomus mosseae induces growth and metal accumulation changes in Cannabis sativa L.
    Citterio S; Prato N; Fumagalli P; Aina R; Massa N; Santagostino A; Sgorbati S; Berta G
    Chemosphere; 2005 Mar; 59(1):21-9. PubMed ID: 15698640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergistic effects of arbuscular mycorrhizal fungi and phosphate rock on heavy metal uptake and accumulation by an arsenic hyperaccumulator.
    Leung HM; Wu FY; Cheung KC; Ye ZH; Wong MH
    J Hazard Mater; 2010 Sep; 181(1-3):497-507. PubMed ID: 20541316
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Timing of phosphate application affects arsenic phytoextraction by Pteris vittata L. of different ages.
    Santos JA; Gonzaga MI; Ma LQ; Srivastava M
    Environ Pollut; 2008 Jul; 154(2):306-11. PubMed ID: 18045757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of an ecotype of brake-fern, Pteris vittata, for arsenic tolerance and accumulation in plant biomass.
    Sarangi BK; Chakrabarti T
    Tsitol Genet; 2008; 42(5):16-31. PubMed ID: 19140437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mixed arbuscular mycorrhizal (AM) fungal application to improve growth and arsenic accumulation of Pteris vittata (As hyperaccumulator) grown in As-contaminated soil.
    Leung HM; Leung AO; Ye ZH; Cheung KC; Yung KK
    Chemosphere; 2013 Aug; 92(10):1367-74. PubMed ID: 23755987
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arsenic hyperaccumulation by Pteris vittata from arsenic contaminated soils and the effect of liming and phosphate fertilisation.
    Caille N; Swanwick S; Zhao FJ; McGrath SP
    Environ Pollut; 2004 Nov; 132(1):113-20. PubMed ID: 15276279
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.