BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 16603227)

  • 61. [Effects of interspecies difference of arbuscular mycorrhizal fungi on Citrus grandis cv. Changshou Shatian you seedlings vegetative growth and mineral contents].
    Tong R; Yang X; Li D
    Ying Yong Sheng Tai Xue Bao; 2006 Jul; 17(7):1229-33. PubMed ID: 17044497
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Effects of arsenic species and concentrations on arsenic accumulation by different fern species in a hydroponic system.
    Fayiga AO; Ma LQ; Santos J; Rathinasabapathi B; Stamps B; Littell RC
    Int J Phytoremediation; 2005; 7(3):231-40. PubMed ID: 16285413
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Zinc tolerance and accumulation in Pteris vittata L. and its potential for phytoremediation of Zn- and As-contaminated soil.
    An ZZ; Huang ZC; Lei M; Liao XY; Zheng YM; Chen TB
    Chemosphere; 2006 Feb; 62(5):796-802. PubMed ID: 15987653
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Phytoremediation of arsenic and lead in contaminated soil using Chinese brake ferns (Pteris vittata) and Indian mustard (Brassica juncea).
    Salido AL; Hasty KL; Lim JM; Butcher DJ
    Int J Phytoremediation; 2003; 5(2):89-103. PubMed ID: 12929493
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Arsenic accumulation in the hyperaccumulator Chinese brake and its utilization potential for phytoremediation.
    Tu C; Ma LQ; Bondada B
    J Environ Qual; 2002; 31(5):1671-5. PubMed ID: 12371185
    [TBL] [Abstract][Full Text] [Related]  

  • 66. First evidence on different transportation modes of arsenic and phosphorus in arsenic hyperaccumulator Pteris vittata.
    Lei M; Wan XM; Huang ZC; Chen TB; Li XW; Liu YR
    Environ Pollut; 2012 Feb; 161():1-7. PubMed ID: 22230060
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Interaction between Glomus mosseae and soil yeasts on growth and nutrition of cowpea.
    Boby VU; Balakrishna AN; Bagyaraj DJ
    Microbiol Res; 2008; 163(6):693-700. PubMed ID: 17324563
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Three new arsenic hyperaccumulating ferns.
    Srivastava M; Ma LQ; Santos JA
    Sci Total Environ; 2006 Jul; 364(1-3):24-31. PubMed ID: 16371231
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Arbuscular mycorrhiza enhanced arsenic resistance of both white clover (Trifolium repens Linn.) and ryegrass (Lolium perenne L.) plants in an arsenic-contaminated soil.
    Dong Y; Zhu YG; Smith FA; Wang Y; Chen B
    Environ Pollut; 2008 Sep; 155(1):174-81. PubMed ID: 18060670
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Arsenic-induced morphogenic response in roots of arsenic hyperaccumulator fern Pteris vittata.
    Forino LM; Ruffini Castiglione M; Bartoli G; Balestri M; Andreucci A; Tagliasacchi AM
    J Hazard Mater; 2012 Oct; 235-236():271-8. PubMed ID: 22906843
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Phytoremediation of a Highly Arsenic Polluted Site, Using
    Cantamessa S; Massa N; Gamalero E; Berta G
    Plants (Basel); 2020 Sep; 9(9):. PubMed ID: 32947777
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Interaction of arsenic and phosphate on their uptake and accumulation in Chinese brake fern.
    Lou LQ; Ye ZH; Lin AJ; Wong MH
    Int J Phytoremediation; 2010 Jul; 12(5):487-502. PubMed ID: 21166290
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Arsenic bioavailability in the soil amended with leaves of arsenic hyperaccumulator, Chinese brake fern (Pteris vittata L).
    Du X; Cui Y; Weng L; Cao Q; Zhu Y
    Environ Toxicol Chem; 2008 Jan; 27(1):126-30. PubMed ID: 18092848
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Improvement of growth of Eucalyptus globulus and soil biological parameters by amendment with sewage sludge and inoculation with arbuscular mycorrhizal and saprobe fungi.
    Arriagada C; Sampedro I; Garcia-Romera I; Ocampo J
    Sci Total Environ; 2009 Aug; 407(17):4799-806. PubMed ID: 19515400
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Application of Aspergillus niger-treated agrowaste residue and Glomus mosseae for improving growth and nutrition of Trifolium repens in a Cd-contaminated soil.
    Medina A; Vassilev N; Barea JM; Azcón R
    J Biotechnol; 2005 Apr; 116(4):369-78. PubMed ID: 15748763
    [TBL] [Abstract][Full Text] [Related]  

  • 76. [Influence of Uranium in Pteris vittata L. Inoculated by Arbuscular Mycorrhizal Fungus].
    Zheng WJ; Wang MY
    Huan Jing Ke Xue; 2015 Aug; 36(8):3004-10. PubMed ID: 26592033
    [TBL] [Abstract][Full Text] [Related]  

  • 77. In vivo micro X-ray analysis utilizing synchrotron radiation of the gametophytes of three arsenic accumulating ferns, Pteris vittata L., Pteris cretica L. and Athyrium yokoscense, in different growth stages.
    Kashiwabara T; Mitsuo S; Hokura A; Kitajima N; Abe T; Nakai I
    Metallomics; 2010 Apr; 2(4):261-70. PubMed ID: 21069168
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Beneficial effect of saprobe and arbuscular mycorrhizal fungi on growth of Eucalyptus globulus co-cultured with Glycine max in soil contaminated with heavy metals.
    Arriagada CA; Herrera MA; Ocampo JA
    J Environ Manage; 2007 Jul; 84(1):93-9. PubMed ID: 16837125
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Selenium bioavailability and uptake as affected by four different plants in a loamy clay soil with particular attention to mycorrhizae inoculated ryegrass.
    Munier-Lamy C; Deneux-Mustin S; Mustin C; Merlet D; Berthelin J; Leyval C
    J Environ Radioact; 2007; 97(2-3):148-58. PubMed ID: 17544553
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The role of arsenate reductase and superoxide dismutase in As accumulation in four Pteris species.
    Liu Y; Wang HB; Wong MH; Ye ZH
    Environ Int; 2009 Apr; 35(3):491-5. PubMed ID: 18793802
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.