BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 16603379)

  • 1. Purification and characterization of the chaperone-like Hsp26 from Saccharomyces cerevisiae.
    Ferreira RM; de Andrade LR; Dutra MB; de Souza MF; Flosi Paschoalin VM; Silva JT
    Protein Expr Purif; 2006 Jun; 47(2):384-92. PubMed ID: 16603379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hsp26: a temperature-regulated chaperone.
    Haslbeck M; Walke S; Stromer T; Ehrnsperger M; White HE; Chen S; Saibil HR; Buchner J
    EMBO J; 1999 Dec; 18(23):6744-51. PubMed ID: 10581247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A domain in the N-terminal part of Hsp26 is essential for chaperone function and oligomerization.
    Haslbeck M; Ignatiou A; Saibil H; Helmich S; Frenzl E; Stromer T; Buchner J
    J Mol Biol; 2004 Oct; 343(2):445-55. PubMed ID: 15451672
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The small heat-shock protein Hsp26 of Saccharomyces cerevisiae assembles into a high molecular weight aggregate.
    Bentley NJ; Fitch IT; Tuite MF
    Yeast; 1992 Feb; 8(2):95-106. PubMed ID: 1561840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The activation mechanism of Hsp26 does not require dissociation of the oligomer.
    Franzmann TM; Wühr M; Richter K; Walter S; Buchner J
    J Mol Biol; 2005 Jul; 350(5):1083-93. PubMed ID: 15967461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple distinct assemblies reveal conformational flexibility in the small heat shock protein Hsp26.
    White HE; Orlova EV; Chen S; Wang L; Ignatiou A; Gowen B; Stromer T; Franzmann TM; Haslbeck M; Buchner J; Saibil HR
    Structure; 2006 Jul; 14(7):1197-204. PubMed ID: 16843901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of the chaperone Hsp26 is controlled by the rearrangement of its thermosensor domain.
    Franzmann TM; Menhorn P; Walter S; Buchner J
    Mol Cell; 2008 Feb; 29(2):207-16. PubMed ID: 18243115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Small heat-shock proteins function in the insoluble protein complex.
    Jiao W; Li P; Zhang J; Zhang H; Chang Z
    Biochem Biophys Res Commun; 2005 Sep; 335(1):227-31. PubMed ID: 16055090
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular chaperone function of the Rana catesbeiana small heat shock protein, hsp30.
    Kaldis A; Atkinson BG; Heikkila JJ
    Comp Biochem Physiol A Mol Integr Physiol; 2004 Oct; 139(2):175-82. PubMed ID: 15528166
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural dynamics of archaeal small heat shock proteins.
    Haslbeck M; Kastenmüller A; Buchner J; Weinkauf S; Braun N
    J Mol Biol; 2008 Apr; 378(2):362-74. PubMed ID: 18353362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Matrix-assisted refolding of oligomeric small heat-shock protein Hsp26.
    Franzmann TM
    Int J Biol Macromol; 2006 Aug; 39(1-3):104-10. PubMed ID: 16626802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure of a small heat-shock protein.
    Kim KK; Kim R; Kim SH
    Nature; 1998 Aug; 394(6693):595-9. PubMed ID: 9707123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of the regulation of the molecular chaperone Hsp26 by temperature-induced dissociation: the N-terminal domail is important for oligomer assembly and the binding of unfolding proteins.
    Stromer T; Fischer E; Richter K; Haslbeck M; Buchner J
    J Biol Chem; 2004 Mar; 279(12):11222-8. PubMed ID: 14722093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recombinant expression and in vitro refolding of the yeast small heat shock protein Hsp42.
    Haslbeck M
    Int J Biol Macromol; 2006 Mar; 38(2):107-14. PubMed ID: 16488470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hsp42 is the general small heat shock protein in the cytosol of Saccharomyces cerevisiae.
    Haslbeck M; Braun N; Stromer T; Richter B; Model N; Weinkauf S; Buchner J
    EMBO J; 2004 Feb; 23(3):638-49. PubMed ID: 14749732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation mechanism of HSP16.5 from Methanococcus jannaschii.
    Kim DR; Lee I; Ha SC; Kim KK
    Biochem Biophys Res Commun; 2003 Aug; 307(4):991-8. PubMed ID: 12878210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differences in the chaperone-like activities of the four main small heat shock proteins of Drosophila melanogaster.
    Morrow G; Heikkila JJ; Tanguay RM
    Cell Stress Chaperones; 2006; 11(1):51-60. PubMed ID: 16572729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional rescue of mutant human cystathionine beta-synthase by manipulation of Hsp26 and Hsp70 levels in Saccharomyces cerevisiae.
    Singh LR; Kruger WD
    J Biol Chem; 2009 Feb; 284(7):4238-45. PubMed ID: 19074437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification and characterization of two small heat shock proteins from Anabaena sp. PCC 7120.
    Liu X; Huang W; Li M; Wu Q
    IUBMB Life; 2005 Jun; 57(6):449-54. PubMed ID: 16012054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphorylation activates the yeast small heat shock protein Hsp26 by weakening domain contacts in the oligomer ensemble.
    Mühlhofer M; Peters C; Kriehuber T; Kreuzeder M; Kazman P; Rodina N; Reif B; Haslbeck M; Weinkauf S; Buchner J
    Nat Commun; 2021 Nov; 12(1):6697. PubMed ID: 34795272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.