BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

377 related articles for article (PubMed ID: 16603651)

  • 1. Endogenous and synthetic microRNAs stimulate simultaneous, efficient, and localized regulation of multiple targets in diverse species.
    Alvarez JP; Pekker I; Goldshmidt A; Blum E; Amsellem Z; Eshed Y
    Plant Cell; 2006 May; 18(5):1134-51. PubMed ID: 16603651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Failure of the tomato trans-acting short interfering RNA program to regulate AUXIN RESPONSE FACTOR3 and ARF4 underlies the wiry leaf syndrome.
    Yifhar T; Pekker I; Peled D; Friedlander G; Pistunov A; Sabban M; Wachsman G; Alvarez JP; Amsellem Z; Eshed Y
    Plant Cell; 2012 Sep; 24(9):3575-89. PubMed ID: 23001036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Profiling microRNAs and their targets in an important fleshy fruit: tomato (Solanum lycopersicum).
    Din M; Barozai MY
    Gene; 2014 Feb; 535(2):198-203. PubMed ID: 24315821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional plasticity of miR165/166 in plant development revealed by small tandem target mimic.
    Jia X; Ding N; Fan W; Yan J; Gu Y; Tang X; Li R; Tang G
    Plant Sci; 2015 Apr; 233():11-21. PubMed ID: 25711809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comprehensive protein-based artificial microRNA screens for effective gene silencing in plants.
    Li JF; Chung HS; Niu Y; Bush J; McCormack M; Sheen J
    Plant Cell; 2013 May; 25(5):1507-22. PubMed ID: 23645631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Virus-Based microRNA Silencing in Plants.
    Zhao J; Wang G; Jiang H; Liu T; Dong J; Wang Z; Zhang B; Song J
    Methods Mol Biol; 2020; 2172():243-257. PubMed ID: 32557374
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Lin W; Gupta SK; Arazi T; Spitzer-Rimon B
    Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33925088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient silencing of endogenous microRNAs using artificial microRNAs in Arabidopsis thaliana.
    Eamens AL; Agius C; Smith NA; Waterhouse PM; Wang MB
    Mol Plant; 2011 Jan; 4(1):157-70. PubMed ID: 20943811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In silico identification and characterization of microRNAs and their putative target genes in Solanaceae plants.
    Kim HJ; Baek KH; Lee BW; Choi D; Hur CG
    Genome; 2011 Feb; 54(2):91-8. PubMed ID: 21326365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structurally different alleles of the ath-MIR824 microRNA precursor are maintained at high frequency in Arabidopsis thaliana.
    de Meaux J; Hu JY; Tartler U; Goebel U
    Proc Natl Acad Sci U S A; 2008 Jul; 105(26):8994-9. PubMed ID: 18579782
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of conserved microRNAs and their targets from Solanum lycopersicum Mill.
    Zhang J; Zeng R; Chen J; Liu X; Liao Q
    Gene; 2008 Oct; 423(1):1-7. PubMed ID: 18602455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and expression analysis of microRNAs and targets in the biofuel crop sugarcane.
    Zanca AS; Vicentini R; Ortiz-Morea FA; Del Bem LE; da Silva MJ; Vincentz M; Nogueira FT
    BMC Plant Biol; 2010 Nov; 10():260. PubMed ID: 21092324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HYL1 regulates the balance between adaxial and abaxial identity for leaf flattening via miRNA-mediated pathways.
    Liu Z; Jia L; Wang H; He Y
    J Exp Bot; 2011 Aug; 62(12):4367-81. PubMed ID: 21610018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solanum lycopersicum cytokinin response factor (SlCRF) genes: characterization of CRF domain-containing ERF genes in tomato.
    Shi X; Gupta S; Rashotte AM
    J Exp Bot; 2012 Jan; 63(2):973-82. PubMed ID: 22068146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of MIR159/319 microRNA genes and their post-transcriptional regulatory link to siRNA pathways.
    Li Y; Li C; Ding G; Jin Y
    BMC Evol Biol; 2011 May; 11():122. PubMed ID: 21569383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep sequencing of tomato short RNAs identifies microRNAs targeting genes involved in fruit ripening.
    Moxon S; Jing R; Szittya G; Schwach F; Rusholme Pilcher RL; Moulton V; Dalmay T
    Genome Res; 2008 Oct; 18(10):1602-9. PubMed ID: 18653800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of miRNAs involved in long-term simulated microgravity response in Solanum lycopersicum.
    Xu D; Guo S; Liu M
    Plant Physiol Biochem; 2013 May; 66():10-9. PubMed ID: 23454293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptional and post-transcriptional regulation of a NAC1 transcription factor in Medicago truncatula roots.
    D'haeseleer K; Den Herder G; Laffont C; Plet J; Mortier V; Lelandais-Brière C; De Bodt S; De Keyser A; Crespi M; Holsters M; Frugier F; Goormachtig S
    New Phytol; 2011 Aug; 191(3):647-661. PubMed ID: 21770944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An improved cucumber mosaic virus-based vector for efficient decoying of plant microRNAs.
    Liao Q; Tu Y; Carr JP; Du Z
    Sci Rep; 2015 Aug; 5():13178. PubMed ID: 26278008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of plant pre-microRNAs and their microRNAs in genome-scale sequences using structure-sequence features and support vector machine.
    Meng J; Liu D; Sun C; Luan Y
    BMC Bioinformatics; 2014 Dec; 15(1):423. PubMed ID: 25547126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.