BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 16603683)

  • 1. Regulation of myocardial substrate metabolism during increased energy expenditure: insights from computational studies.
    Zhou L; Cabrera ME; Okere IC; Sharma N; Stanley WC
    Am J Physiol Heart Circ Physiol; 2006 Sep; 291(3):H1036-46. PubMed ID: 16603683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parallel activation of mitochondrial oxidative metabolism with increased cardiac energy expenditure is not dependent on fatty acid oxidation in pigs.
    Zhou L; Cabrera ME; Huang H; Yuan CL; Monika DK; Sharma N; Bian F; Stanley WC
    J Physiol; 2007 Mar; 579(Pt 3):811-21. PubMed ID: 17185335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of substrate on mitochondrial NADH, cytosolic redox state, and phosphorylated compounds in isolated hearts.
    Scholz TD; Laughlin MR; Balaban RS; Kupriyanov VV; Heineman FW
    Am J Physiol; 1995 Jan; 268(1 Pt 2):H82-91. PubMed ID: 7840306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of lactate production at the onset of ischaemia is independent of mitochondrial NADH/NAD+: insights from in silico studies.
    Zhou L; Stanley WC; Saidel GM; Yu X; Cabrera ME
    J Physiol; 2005 Dec; 569(Pt 3):925-37. PubMed ID: 16223766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of NADH/NAD+ transport activity and glycogen store on skeletal muscle energy metabolism during exercise: in silico studies.
    Li Y; Dash RK; Kim J; Saidel GM; Cabrera ME
    Am J Physiol Cell Physiol; 2009 Jan; 296(1):C25-46. PubMed ID: 18829894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanistic model of myocardial energy metabolism under normal and ischemic conditions.
    Salem JE; Saidel GM; Stanley WC; Cabrera ME
    Ann Biomed Eng; 2002 Feb; 30(2):202-16. PubMed ID: 11962772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Respiratory control in heart muscle during fatty acid oxidation. Energy state or substrate-level regulation by Ca2+?
    Vuorinen KH; Ala-Rämi A; Yan Y; Ingman P; Hassinen IE
    J Mol Cell Cardiol; 1995 Aug; 27(8):1581-91. PubMed ID: 8523421
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of O2 in regulation of lactate dynamics during hypoxia: mathematical model and analysis.
    Cabrera ME; Saidel GM; Kalhan SC
    Ann Biomed Eng; 1998; 26(1):1-27. PubMed ID: 10355547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of pyruvate dehydrogenase activity and citric acid cycle intermediates during high cardiac power generation.
    Sharma N; Okere IC; Brunengraber DZ; McElfresh TA; King KL; Sterk JP; Huang H; Chandler MP; Stanley WC
    J Physiol; 2005 Jan; 562(Pt 2):593-603. PubMed ID: 15550462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The dynamic regulation of myocardial oxidative phosphorylation: analysis of the response time of oxygen consumption.
    van Beek JH; Tian X; Zuurbier CJ; de Groot B; van Echteld CJ; Eijgelshoven MH; Hak JB
    Mol Cell Biochem; 1998 Jul; 184(1-2):321-44. PubMed ID: 9746328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanistic model of cardiac energy metabolism predicts localization of glycolysis to cytosolic subdomain during ischemia.
    Zhou L; Salem JE; Saidel GM; Stanley WC; Cabrera ME
    Am J Physiol Heart Circ Physiol; 2005 May; 288(5):H2400-11. PubMed ID: 15681693
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A simulation study on the constancy of cardiac energy metabolites during workload transition.
    Saito R; Takeuchi A; Himeno Y; Inagaki N; Matsuoka S
    J Physiol; 2016 Dec; 594(23):6929-6945. PubMed ID: 27530892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulation of cardiac work transitions, in vitro: effects of simultaneous Ca2+ and ATPase additions on isolated porcine heart mitochondria.
    Territo PR; French SA; Balaban RS
    Cell Calcium; 2001 Jul; 30(1):19-27. PubMed ID: 11396984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Limited transfer of cytosolic NADH into mitochondria at high cardiac workload.
    O'Donnell JM; Kudej RK; LaNoue KF; Vatner SF; Lewandowski ED
    Am J Physiol Heart Circ Physiol; 2004 Jun; 286(6):H2237-42. PubMed ID: 14751856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relation among regional O2 consumption, high-energy phosphates, and substrate uptake in porcine right ventricle.
    Schwartz GG; Greyson CR; Wisneski JA; Garcia J; Steinman S
    Am J Physiol; 1994 Feb; 266(2 Pt 2):H521-30. PubMed ID: 8141353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of cellular compartmentation in the metabolic response to stress: mechanistic insights from computational models.
    Zhou L; Yu X; Cabrera ME; Stanley WC
    Ann N Y Acad Sci; 2006 Oct; 1080():120-39. PubMed ID: 17132780
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial NAD(P)H, ADP, oxidative phosphorylation, and contraction in isolated heart cells.
    White RL; Wittenberg BA
    Am J Physiol Heart Circ Physiol; 2000 Oct; 279(4):H1849-57. PubMed ID: 11009472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of pyruvate dehydrogenase in the common killifish, Fundulus heteroclitus, during hypoxia exposure.
    Richards JG; Sardella BA; Schulte PM
    Am J Physiol Regul Integr Comp Physiol; 2008 Sep; 295(3):R979-90. PubMed ID: 18579651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lactate metabolism during exercise: analysis by an integrative systems model.
    Cabrera ME; Saidel GM; Kalhan SC
    Am J Physiol; 1999 Nov; 277(5):R1522-36. PubMed ID: 10564227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical modelling of the effects of cold atmospheric plasma on mitochondrial redox homeostasis and energy metabolism.
    Murakami T
    Sci Rep; 2019 Nov; 9(1):17138. PubMed ID: 31748630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.