BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 16603711)

  • 21. Neural coding of periodicity in marmoset auditory cortex.
    Bendor D; Wang X
    J Neurophysiol; 2010 Apr; 103(4):1809-22. PubMed ID: 20147419
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Neural Correlates of Vocal Production and Motor Control in Human Heschl's Gyrus.
    Behroozmand R; Oya H; Nourski KV; Kawasaki H; Larson CR; Brugge JF; Howard MA; Greenlee JD
    J Neurosci; 2016 Feb; 36(7):2302-15. PubMed ID: 26888939
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Increased volume and function of right auditory cortex as a marker for absolute pitch.
    Wengenroth M; Blatow M; Heinecke A; Reinhardt J; Stippich C; Hofmann E; Schneider P
    Cereb Cortex; 2014 May; 24(5):1127-37. PubMed ID: 23302811
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Distribution of multiunit pitch responses recorded intracranially from human auditory cortex.
    Berger JI; Gander PE; Kikuchi Y; Petkov CI; Kumar S; Kovach C; Oya H; Kawasaki H; Howard MA; Griffiths TD
    Cereb Cortex; 2023 Jul; 33(14):9105-9116. PubMed ID: 37246155
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Time course and hemispheric lateralization effects of complex pitch processing: evoked magnetic fields in response to rippled noise stimuli.
    Hertrich I; Mathiak K; Lutzenberger W; Ackermann H
    Neuropsychologia; 2004; 42(13):1814-26. PubMed ID: 15351630
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Frequency and periodicity are represented in orthogonal maps in the human auditory cortex: evidence from magnetoencephalography.
    Langner G; Sams M; Heil P; Schulze H
    J Comp Physiol A; 1997 Dec; 181(6):665-76. PubMed ID: 9449825
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gamma band pitch responses in human auditory cortex measured with magnetoencephalography.
    Sedley W; Teki S; Kumar S; Overath T; Barnes GR; Griffiths TD
    Neuroimage; 2012 Jan; 59(2):1904-11. PubMed ID: 21925281
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pre-target neural oscillations predict variability in the detection of small pitch changes.
    Florin E; Vuvan D; Peretz I; Baillet S
    PLoS One; 2017; 12(5):e0177836. PubMed ID: 28542644
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transient and sustained processing of musical consonance in auditory cortex and the effect of musicality.
    Andermann M; Patterson RD; Rupp A
    J Neurophysiol; 2020 Apr; 123(4):1320-1331. PubMed ID: 32073930
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A neural representation of pitch salience in nonprimary human auditory cortex revealed with functional magnetic resonance imaging.
    Penagos H; Melcher JR; Oxenham AJ
    J Neurosci; 2004 Jul; 24(30):6810-5. PubMed ID: 15282286
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Early cortical processing of pitch height and the role of adaptation and musicality.
    Andermann M; Günther M; Patterson RD; Rupp A
    Neuroimage; 2021 Jan; 225():117501. PubMed ID: 33169697
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The human 'pitch center' responds differently to iterated noise and Huggins pitch.
    Hall DA; Plack CJ
    Neuroreport; 2007 Mar; 18(4):323-7. PubMed ID: 17435596
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Neural correlates of perceptual grouping effects in the processing of sound omission by musicians and nonmusicians.
    Ono K; Altmann CF; Matsuhashi M; Mima T; Fukuyama H
    Hear Res; 2015 Jan; 319():25-31. PubMed ID: 25446245
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A pitch glide activates an intermediate response between auditory N1 and mismatch negativity.
    Noda K; Tonoike M; Doi K; Koizuka I; Yoshida H; Yamaguchi M; Hamada T; Seo R; Kubo T
    Neuroreport; 1999 Jun; 10(9):1909-12. PubMed ID: 10501531
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural, functional, and perceptual differences in Heschl's gyrus and musical instrument preference.
    Schneider P; Sluming V; Roberts N; Bleeck S; Rupp A
    Ann N Y Acad Sci; 2005 Dec; 1060():387-94. PubMed ID: 16597790
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Temporal integration affects intensity change detection in human auditory cortex.
    Soeta Y; Nakagawa S
    Neuroreport; 2010 Dec; 21(18):1157-61. PubMed ID: 20938362
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Repetition suppression in auditory-motor regions to pitch and temporal structure in music.
    Brown RM; Chen JL; Hollinger A; Penhune VB; Palmer C; Zatorre RJ
    J Cogn Neurosci; 2013 Feb; 25(2):313-28. PubMed ID: 23163413
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Distinct mechanisms for processing spatial sequences and pitch sequences in the human auditory brain.
    Warren JD; Griffiths TD
    J Neurosci; 2003 Jul; 23(13):5799-804. PubMed ID: 12843284
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neural response correlates of detection of monaurally and binaurally created pitches in humans.
    Chait M; Poeppel D; Simon JZ
    Cereb Cortex; 2006 Jun; 16(6):835-48. PubMed ID: 16151180
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reexamining the evidence for a pitch-sensitive region: a human fMRI study using iterated ripple noise.
    Barker D; Plack CJ; Hall DA
    Cereb Cortex; 2012 Apr; 22(4):745-53. PubMed ID: 21709174
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.