These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

486 related articles for article (PubMed ID: 16603794)

  • 81. Regeneration of nigrostriatal dopaminergic axons by degradation of chondroitin sulfate is accompanied by elimination of the fibrotic scar and glia limitans in the lesion site.
    Li HP; Homma A; Sango K; Kawamura K; Raisman G; Kawano H
    J Neurosci Res; 2007 Feb; 85(3):536-47. PubMed ID: 17154415
    [TBL] [Abstract][Full Text] [Related]  

  • 82. EphB3: an endogenous mediator of adult axonal plasticity and regrowth after CNS injury.
    Liu X; Hawkes E; Ishimaru T; Tran T; Sretavan DW
    J Neurosci; 2006 Mar; 26(12):3087-101. PubMed ID: 16554460
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Functional differences and interactions between phenotypic subpopulations of olfactory ensheathing cells in promoting CNS axonal regeneration.
    Kumar R; Hayat S; Felts P; Bunting S; Wigley C
    Glia; 2005 Apr; 50(1):12-20. PubMed ID: 15599940
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Oncomodulin is a macrophage-derived signal for axon regeneration in retinal ganglion cells.
    Yin Y; Henzl MT; Lorber B; Nakazawa T; Thomas TT; Jiang F; Langer R; Benowitz LI
    Nat Neurosci; 2006 Jun; 9(6):843-52. PubMed ID: 16699509
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Implantation of neurotrophic factor-treated sensory nerve graft enhances survival and axonal regeneration of motoneurons after spinal root avulsion.
    Chu TH; Li SY; Guo A; Wong WM; Yuan Q; Wu W
    J Neuropathol Exp Neurol; 2009 Jan; 68(1):94-101. PubMed ID: 19104442
    [TBL] [Abstract][Full Text] [Related]  

  • 86. TAJ/TROY, an orphan TNF receptor family member, binds Nogo-66 receptor 1 and regulates axonal regeneration.
    Shao Z; Browning JL; Lee X; Scott ML; Shulga-Morskaya S; Allaire N; Thill G; Levesque M; Sah D; McCoy JM; Murray B; Jung V; Pepinsky RB; Mi S
    Neuron; 2005 Feb; 45(3):353-9. PubMed ID: 15694322
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Where no synapses go: gatekeepers of circuit remodeling and synaptic strength.
    Mironova YA; Giger RJ
    Trends Neurosci; 2013 Jun; 36(6):363-73. PubMed ID: 23642707
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Pigment Epithelium-Derived Factor Promotes Axon Regeneration and Functional Recovery After Spinal Cord Injury.
    Stevens AR; Ahmed U; Vigneswara V; Ahmed Z
    Mol Neurobiol; 2019 Nov; 56(11):7490-7507. PubMed ID: 31049830
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Central nervous system regeneration: mission impossible?
    Fry EJ
    Clin Exp Pharmacol Physiol; 2001 Apr; 28(4):253-8. PubMed ID: 11251636
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Membrane-bound CSPG mediates growth cone outgrowth and substrate specificity by Schwann cell contact with the DRG neuron cell body and not via growth cone contact.
    Castro C; Kuffler DP
    Exp Neurol; 2006 Jul; 200(1):19-25. PubMed ID: 16530184
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Focal application of neutralizing antibodies to soluble neurotrophic factors reduces collateral axonal branching after peripheral nerve lesion.
    Streppel M; Azzolin N; Dohm S; Guntinas-Lichius O; Haas C; Grothe C; Wevers A; Neiss WF; Angelov DN
    Eur J Neurosci; 2002 Apr; 15(8):1327-42. PubMed ID: 11994127
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Blockade of hexokinase activity and binding to mitochondria inhibits neurite outgrowth in cultured adult rat sensory neurons.
    Wang Z; Gardiner NJ; Fernyhough P
    Neurosci Lett; 2008 Mar; 434(1):6-11. PubMed ID: 18308470
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Combination of engineered Schwann cell grafts to secrete neurotrophin and chondroitinase promotes axonal regeneration and locomotion after spinal cord injury.
    Kanno H; Pressman Y; Moody A; Berg R; Muir EM; Rogers JH; Ozawa H; Itoi E; Pearse DD; Bunge MB
    J Neurosci; 2014 Jan; 34(5):1838-55. PubMed ID: 24478364
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Neural circuit repair after central nervous system injury.
    Tsujioka H; Yamashita T
    Int Immunol; 2021 Jun; 33(6):301-309. PubMed ID: 33270108
    [TBL] [Abstract][Full Text] [Related]  

  • 95. [FGF-2-treatment improves locomotor function via axonal regeneration in the transected rat spinal cord].
    Furukawa S; Furukawa Y
    Brain Nerve; 2007 Dec; 59(12):1333-9. PubMed ID: 18095482
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Cyclic AMP elevates tubulin expression without increasing intrinsic axon growth capacity.
    Han PJ; Shukla S; Subramanian PS; Hoffman PN
    Exp Neurol; 2004 Oct; 189(2):293-302. PubMed ID: 15380480
    [TBL] [Abstract][Full Text] [Related]  

  • 97. The bright side of the glial scar in CNS repair.
    Rolls A; Shechter R; Schwartz M
    Nat Rev Neurosci; 2009 Mar; 10(3):235-41. PubMed ID: 19229242
    [TBL] [Abstract][Full Text] [Related]  

  • 98. The making of successful axonal regeneration: genes, molecules and signal transduction pathways.
    Raivich G; Makwana M
    Brain Res Rev; 2007 Feb; 53(2):287-311. PubMed ID: 17079020
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Molecular targets for therapeutic intervention after spinal cord injury.
    Kwon BK; Borisoff JF; Tetzlaff W
    Mol Interv; 2002 Jul; 2(4):244-58. PubMed ID: 14993395
    [TBL] [Abstract][Full Text] [Related]  

  • 100. A role for cAMP in regeneration of the adult mammalian CNS.
    Spencer T; Filbin MT
    J Anat; 2004 Jan; 204(1):49-55. PubMed ID: 14690477
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.