These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 16603911)

  • 1. Enriched acoustic environment after noise trauma abolishes neural signs of tinnitus.
    Noreña AJ; Eggermont JJ
    Neuroreport; 2006 Apr; 17(6):559-63. PubMed ID: 16603911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enriched acoustic environment after noise trauma reduces hearing loss and prevents cortical map reorganization.
    Noreña AJ; Eggermont JJ
    J Neurosci; 2005 Jan; 25(3):699-705. PubMed ID: 15659607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in spontaneous firing rate and neural synchrony in cat primary auditory cortex after localized tone-induced hearing loss.
    Seki S; Eggermont JJ
    Hear Res; 2003 Jun; 180(1-2):28-38. PubMed ID: 12782350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cortical tonotopic map reorganization and its implications for treatment of tinnitus.
    Eggermont JJ
    Acta Otolaryngol Suppl; 2006 Dec; (556):9-12. PubMed ID: 17114136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in auditory thalamus neural firing patterns after acoustic trauma in rats.
    Barry KM; Robertson D; Mulders WHAM
    Hear Res; 2019 Aug; 379():89-97. PubMed ID: 31108284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spontaneous firing activity of cortical neurons in adult cats with reorganized tonotopic map following pure-tone trauma.
    Komiya H; Eggermont JJ
    Acta Otolaryngol; 2000 Sep; 120(6):750-6. PubMed ID: 11099153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Noise exposure alters long-term neural firing rates and synchrony in primary auditory and rostral belt cortices following bimodal stimulation.
    Takacs JD; Forrest TJ; Basura GJ
    Hear Res; 2017 Dec; 356():1-15. PubMed ID: 28724501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noise trauma induced plastic changes in brain regions outside the classical auditory pathway.
    Chen GD; Sheppard A; Salvi R
    Neuroscience; 2016 Feb; 315():228-45. PubMed ID: 26701290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predisposition for and prevention of subjective tinnitus development.
    Ahlf S; Tziridis K; Korn S; Strohmeyer I; Schulze H
    PLoS One; 2012; 7(10):e44519. PubMed ID: 23056180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in spontaneous neural activity immediately after an acoustic trauma: implications for neural correlates of tinnitus.
    Noreña AJ; Eggermont JJ
    Hear Res; 2003 Sep; 183(1-2):137-53. PubMed ID: 13679145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural changes in the auditory cortex of awake guinea pigs after two tinnitus inducers: salicylate and acoustic trauma.
    Noreña AJ; Moffat G; Blanc JL; Pezard L; Cazals Y
    Neuroscience; 2010 Apr; 166(4):1194-209. PubMed ID: 20096752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spontaneous firing rate changes in cat primary auditory cortex following long-term exposure to non-traumatic noise: tinnitus without hearing loss?
    Munguia R; Pienkowski M; Eggermont JJ
    Neurosci Lett; 2013 Jun; 546():46-50. PubMed ID: 23648387
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-plastic reorganization of frequency coding in the inferior colliculus of the rat following noise-induced hearing loss.
    Izquierdo MA; Gutiérrez-Conde PM; Merchán MA; Malmierca MS
    Neuroscience; 2008 Jun; 154(1):355-69. PubMed ID: 18384972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Does enriched acoustic environment in humans abolish chronic tinnitus clinically and electrophysiologically? A double blind placebo controlled study.
    Vanneste S; van Dongen M; De Vree B; Hiseni S; van der Velden E; Strydis C; Joos K; Norena A; Serdijn W; De Ridder D
    Hear Res; 2013 Feb; 296():141-8. PubMed ID: 23104014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of the paraflocculus on normal and abnormal spontaneous firing rates in the inferior colliculus.
    Vogler DP; Robertson D; Mulders WHAM
    Hear Res; 2016 Mar; 333():1-7. PubMed ID: 26724754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shift in the cochlear place-frequency map after noise damage in the mouse.
    Müller M; Smolders JW
    Neuroreport; 2005 Aug; 16(11):1183-7. PubMed ID: 16012345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Noise: Acoustic Trauma to the Inner Ear.
    Hertzano R; Lipford EL; Depireux D
    Otolaryngol Clin North Am; 2020 Aug; 53(4):531-542. PubMed ID: 32362563
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detailed Analysis of High Frequency Auditory Brainstem Response in Patients with Tinnitus: A Preliminary Study.
    Pinkl J; Wilson MJ; Billingsly D; Munguia-Vazquez R
    Int Tinnitus J; 2017 Jun; 21(1):35-43. PubMed ID: 28723600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of long-term non-traumatic noise exposure on the adult central auditory system. Hearing problems without hearing loss.
    Eggermont JJ
    Hear Res; 2017 Sep; 352():12-22. PubMed ID: 27793584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protective effects of Ginkgo biloba extract EGb 761 against noise trauma-induced hearing loss and tinnitus development.
    Tziridis K; Korn S; Ahlf S; Schulze H
    Neural Plast; 2014; 2014():427298. PubMed ID: 25028612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.