These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. A lack of anticipatory remapping of retinotopic receptive fields in the middle temporal area. Ong WS; Bisley JW J Neurosci; 2011 Jul; 31(29):10432-6. PubMed ID: 21775588 [TBL] [Abstract][Full Text] [Related]
7. Spatial dynamics of receptive fields in cat primary visual cortex related to the temporal structure of thalamocortical feedforward activity. Experiments and models. Suder K; Funke K; Zhao Y; Kerscher N; Wennekers T; Wörgötter F Exp Brain Res; 2002 Jun; 144(4):430-44. PubMed ID: 12037629 [TBL] [Abstract][Full Text] [Related]
8. Dynamics of receptive field size in primary visual cortex. Malone BJ; Kumar VR; Ringach DL J Neurophysiol; 2007 Jan; 97(1):407-14. PubMed ID: 17021020 [TBL] [Abstract][Full Text] [Related]
9. Representation of foveal visual fields in the ventral bank of the superior temporal sulcus in the posterior inferotemporal cortex of the macaque monkey. Hikosaka K Behav Brain Res; 1998 Nov; 96(1-2):101-13. PubMed ID: 9821547 [TBL] [Abstract][Full Text] [Related]
10. Saccadic modulation of neural responses: possible roles in saccadic suppression, enhancement, and time compression. Ibbotson MR; Crowder NA; Cloherty SL; Price NS; Mustari MJ J Neurosci; 2008 Oct; 28(43):10952-60. PubMed ID: 18945903 [TBL] [Abstract][Full Text] [Related]
11. Response latencies to visual stimulation and disparity sensitivity in single cells of the awake Macaca mulatta visual cortex. Gonzalez F; Perez R; Justo MS; Bermudez MA Neurosci Lett; 2001 Feb; 299(1-2):41-4. PubMed ID: 11166933 [TBL] [Abstract][Full Text] [Related]
12. Comparison of visual receptive field properties of the superior colliculus and primary visual cortex in rats. Li X; Sun C; Shi L Brain Res Bull; 2015 Aug; 117():69-80. PubMed ID: 26222378 [TBL] [Abstract][Full Text] [Related]
13. Responses of MT and MST neurons to one and two moving objects in the receptive field. Recanzone GH; Wurtz RH; Schwarz U J Neurophysiol; 1997 Dec; 78(6):2904-15. PubMed ID: 9405511 [TBL] [Abstract][Full Text] [Related]
14. Cortical development of the visual system of the rat. Prévost F; Lepore F; Guillemot JP Neuroreport; 2010 Jan; 21(1):50-4. PubMed ID: 19940789 [TBL] [Abstract][Full Text] [Related]
15. The receptive fields of inferior temporal cortex neurons in natural scenes. Rolls ET; Aggelopoulos NC; Zheng F J Neurosci; 2003 Jan; 23(1):339-48. PubMed ID: 12514233 [TBL] [Abstract][Full Text] [Related]
16. Neuronal dynamics of bottom-up and top-down processes in area V4 of macaque monkeys performing a visual search. Ogawa T; Komatsu H Exp Brain Res; 2006 Aug; 173(1):1-13. PubMed ID: 16506012 [TBL] [Abstract][Full Text] [Related]
17. Perceptual and motor processing stages identified in the activity of macaque frontal eye field neurons during visual search. Thompson KG; Hanes DP; Bichot NP; Schall JD J Neurophysiol; 1996 Dec; 76(6):4040-55. PubMed ID: 8985899 [TBL] [Abstract][Full Text] [Related]
18. Visual responses of inferior temporal neurons in awake rhesus monkey. Richmond BJ; Wurtz RH; Sato T J Neurophysiol; 1983 Dec; 50(6):1415-32. PubMed ID: 6663335 [TBL] [Abstract][Full Text] [Related]
19. Responses to continuously changing optic flow in area MST. Paolini M; Distler C; Bremmer F; Lappe M; Hoffmann KP J Neurophysiol; 2000 Aug; 84(2):730-43. PubMed ID: 10938300 [TBL] [Abstract][Full Text] [Related]
20. Microsaccadic eye movements and firing of single cells in the striate cortex of macaque monkeys. Martinez-Conde S; Macknik SL; Hubel DH Nat Neurosci; 2000 Mar; 3(3):251-8. PubMed ID: 10700257 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]