These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 16604080)

  • 1. Continuous-flow lithography for high-throughput microparticle synthesis.
    Dendukuri D; Pregibon DC; Collins J; Hatton TA; Doyle PS
    Nat Mater; 2006 May; 5(5):365-9. PubMed ID: 16604080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stop-flow lithography in a microfluidic device.
    Dendukuri D; Gu SS; Pregibon DC; Hatton TA; Doyle PS
    Lab Chip; 2007 Jul; 7(7):818-28. PubMed ID: 17593999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and self-assembly of amphiphilic polymeric microparticles.
    Dendukuri D; Hatton TA; Doyle PS
    Langmuir; 2007 Apr; 23(8):4669-74. PubMed ID: 17402702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Programmable fluidic production of microparticles with configurable anisotropy.
    Sung KE; Vanapalli SA; Mukhija D; McKay HA; Millunchick JM; Burns MA; Solomon MJ
    J Am Chem Soc; 2008 Jan; 130(4):1335-40. PubMed ID: 18166053
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning curvature in flow lithography: a new class of concave/convex particles.
    Panda P; Yuet KP; Hatton TA; Doyle PS
    Langmuir; 2009 May; 25(10):5986-92. PubMed ID: 19253954
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous dielectrophoretic size-based particle sorting.
    Kralj JG; Lis MT; Schmidt MA; Jensen KF
    Anal Chem; 2006 Jul; 78(14):5019-25. PubMed ID: 16841925
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuous separation of particles using a microfluidic device equipped with flow rate control valves.
    Sai Y; Yamada M; Yasuda M; Seki M
    J Chromatogr A; 2006 Sep; 1127(1-2):214-20. PubMed ID: 16890945
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrafast self-assembly of microscale particles by open-channel flow.
    Choi S; Park I; Hao Z; Holman HY; Pisano AP; Zohdi TI
    Langmuir; 2010 Apr; 26(7):4661-7. PubMed ID: 19921822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoskiving: a new method to produce arrays of nanostructures.
    Xu Q; Rioux RM; Dickey MD; Whitesides GM
    Acc Chem Res; 2008 Dec; 41(12):1566-77. PubMed ID: 18646870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-speed fabrication of patterned colloidal photonic structures in centrifugal microfluidic chips.
    Lee SK; Yi GR; Yang SM
    Lab Chip; 2006 Sep; 6(9):1171-7. PubMed ID: 16929396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-throughput and high-resolution flow cytometry in molded microfluidic devices.
    Simonnet C; Groisman A
    Anal Chem; 2006 Aug; 78(16):5653-63. PubMed ID: 16906708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multifunctional superparamagnetic Janus particles.
    Yuet KP; Hwang DK; Haghgooie R; Doyle PS
    Langmuir; 2010 Mar; 26(6):4281-7. PubMed ID: 19842632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inertial microfluidics for continuous particle separation in spiral microchannels.
    Kuntaegowdanahalli SS; Bhagat AA; Kumar G; Papautsky I
    Lab Chip; 2009 Oct; 9(20):2973-80. PubMed ID: 19789752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Janus and ternary particles generated by microfluidic synthesis: design, synthesis, and self-assembly.
    Nie Z; Li W; Seo M; Xu S; Kumacheva E
    J Am Chem Soc; 2006 Jul; 128(29):9408-12. PubMed ID: 16848476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous focusing of microparticles using inertial lift force and vorticity via multi-orifice microfluidic channels.
    Park JS; Song SH; Jung HI
    Lab Chip; 2009 Apr; 9(7):939-48. PubMed ID: 19294305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous particle separation in spiral microchannels using Dean flows and differential migration.
    Bhagat AA; Kuntaegowdanahalli SS; Papautsky I
    Lab Chip; 2008 Nov; 8(11):1906-14. PubMed ID: 18941692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Soft inertial microfluidics for high throughput separation of bacteria from human blood cells.
    Wu Z; Willing B; Bjerketorp J; Jansson JK; Hjort K
    Lab Chip; 2009 May; 9(9):1193-9. PubMed ID: 19370236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emulsifier-free emulsion polymerization produces highly charged, monodisperse particles for near infrared photonic crystals.
    Reese CE; Asher SA
    J Colloid Interface Sci; 2002 Apr; 248(1):41-6. PubMed ID: 16290501
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of micro and nanostructures in microfluidic systems.
    Marre S; Jensen KF
    Chem Soc Rev; 2010 Mar; 39(3):1183-202. PubMed ID: 20179831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrophoretic assembly of colloidal crystals with optically tunable micropatterns.
    Hayward RC; Saville DA; Aksay IA
    Nature; 2000 Mar; 404(6773):56-9. PubMed ID: 10716438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.