These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 16604207)

  • 1. Microtiter plate based chemistry and in situ screening: a useful approach for rapid inhibitor discovery.
    Brik A; Wu CY; Wong CH
    Org Biomol Chem; 2006 Apr; 4(8):1446-57. PubMed ID: 16604207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epoxide opening in water and screening in situ for rapid discovery of enzyme inhibitors in microtiter plates.
    Liang FS; Brik A; Lin YC; Elder JH; Wong CH
    Bioorg Med Chem; 2006 Feb; 14(4):1058-62. PubMed ID: 16275107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid discovery of potent sulfotransferase inhibitors by diversity-oriented reaction in microplates followed by in situ screening.
    Best MD; Brik A; Chapman E; Lee LV; Cheng WC; Wong CH
    Chembiochem; 2004 Jun; 5(6):811-9. PubMed ID: 15174164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid discovery of triazolobenzylidene-thiazolopyrimidines (TBTP) as CDC25 phosphatase inhibitors by parallel click chemistry and in situ screening.
    Duval R; Kolb S; Braud E; Genest D; Garbay C
    J Comb Chem; 2009; 11(6):947-50. PubMed ID: 19835352
    [No Abstract]   [Full Text] [Related]  

  • 5. "Inject-mix-react-separate-and-quantitate" (IMReSQ) method for screening enzyme inhibitors.
    Wong E; Okhonin V; Berezovski MV; Nozaki T; Waldmann H; Alexandrov K; Krylov SN
    J Am Chem Soc; 2008 Sep; 130(36):11862-3. PubMed ID: 18702487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Slow-binding human serine racemase inhibitors from high-throughput screening of combinatorial libraries.
    Dixon SM; Li P; Liu R; Wolosker H; Lam KS; Kurth MJ; Toney MD
    J Med Chem; 2006 Apr; 49(8):2388-97. PubMed ID: 16610782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combinatorial approach toward synthesis of small molecule libraries as bacterial transglycosylase inhibitors.
    Shih HW; Chen KT; Chen SK; Huang CY; Cheng TJ; Ma C; Wong CH; Cheng WC
    Org Biomol Chem; 2010 Jun; 8(11):2586-93. PubMed ID: 20485795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-throughput synthesis of azide libraries suitable for direct "click" chemistry and in situ screening.
    Srinivasan R; Tan LP; Wu H; Yang PY; Kalesh KA; Yao SQ
    Org Biomol Chem; 2009 May; 7(9):1821-8. PubMed ID: 19590777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibitors of FabI, an enzyme drug target in the bacterial fatty acid biosynthesis pathway.
    Lu H; Tonge PJ
    Acc Chem Res; 2008 Jan; 41(1):11-20. PubMed ID: 18193820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid diversity-oriented synthesis in microtiter plates for in situ screening of HIV protease inhibitors.
    Brik A; Muldoon J; Lin YC; Elder JH; Goodsell DS; Olson AJ; Fokin VV; Sharpless KB; Wong CH
    Chembiochem; 2003 Nov; 4(11):1246-8. PubMed ID: 14613121
    [No Abstract]   [Full Text] [Related]  

  • 11. High-throughput characterization and quality control of small-molecule combinatorial libraries.
    Kenseth JR; Coldiron SJ
    Curr Opin Chem Biol; 2004 Aug; 8(4):418-23. PubMed ID: 15288253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discovery of glutathione S-transferase inhibitors using dynamic combinatorial chemistry.
    Shi B; Stevenson R; Campopiano DJ; Greaney MF
    J Am Chem Soc; 2006 Jul; 128(26):8459-67. PubMed ID: 16802811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discovery of an Aurora kinase inhibitor through site-specific dynamic combinatorial chemistry.
    Cancilla MT; He MM; Viswanathan N; Simmons RL; Taylor M; Fung AD; Cao K; Erlanson DA
    Bioorg Med Chem Lett; 2008 Jul; 18(14):3978-81. PubMed ID: 18579375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-throughput screening of enzyme inhibition using an inhibitor gradient generated in a microchannel.
    Garcia E; Hasenbank MS; Finlayson B; Yager P
    Lab Chip; 2007 Feb; 7(2):249-55. PubMed ID: 17268628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-speed synthesis of potent C2-symmetric HIV-1 protease inhibitors by in-situ aminocarbonylations.
    Wannberg J; Kaiser NF; Vrang L; Samuelsson B; Larhed M; Hallberg A
    J Comb Chem; 2005; 7(4):611-7. PubMed ID: 16004505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discovering novel ligands for macromolecules using X-ray crystallographic screening.
    Nienaber VL; Richardson PL; Klighofer V; Bouska JJ; Giranda VL; Greer J
    Nat Biotechnol; 2000 Oct; 18(10):1105-8. PubMed ID: 11017052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expedient solid-phase synthesis of both symmetric and asymmetric diol libraries targeting aspartic proteases.
    Shi H; Liu K; Leong WW; Yao SQ
    Bioorg Med Chem Lett; 2009 Jul; 19(14):3945-8. PubMed ID: 19328682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid diversity-oriented synthesis in microtiter plates for in situ screening: discovery of potent and selective alpha-fucosidase inhibitors.
    Wu CY; Chang CF; Chen JS; Wong CH; Lin CH
    Angew Chem Int Ed Engl; 2003 Oct; 42(38):4661-4. PubMed ID: 14533157
    [No Abstract]   [Full Text] [Related]  

  • 19. Structure-based virtual screening approach to identify novel classes of Cdc25B phosphatase inhibitors.
    Park H; Li M; Choi J; Cho H; Ham SW
    Bioorg Med Chem Lett; 2009 Aug; 19(15):4372-5. PubMed ID: 19500977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discovery and combinatorial synthesis of fungal metabolites beauveriolides, novel antiatherosclerotic agents.
    Tomoda H; Doi T
    Acc Chem Res; 2008 Jan; 41(1):32-9. PubMed ID: 17803269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.