BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 16604207)

  • 1. Microtiter plate based chemistry and in situ screening: a useful approach for rapid inhibitor discovery.
    Brik A; Wu CY; Wong CH
    Org Biomol Chem; 2006 Apr; 4(8):1446-57. PubMed ID: 16604207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epoxide opening in water and screening in situ for rapid discovery of enzyme inhibitors in microtiter plates.
    Liang FS; Brik A; Lin YC; Elder JH; Wong CH
    Bioorg Med Chem; 2006 Feb; 14(4):1058-62. PubMed ID: 16275107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid discovery of potent sulfotransferase inhibitors by diversity-oriented reaction in microplates followed by in situ screening.
    Best MD; Brik A; Chapman E; Lee LV; Cheng WC; Wong CH
    Chembiochem; 2004 Jun; 5(6):811-9. PubMed ID: 15174164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid discovery of triazolobenzylidene-thiazolopyrimidines (TBTP) as CDC25 phosphatase inhibitors by parallel click chemistry and in situ screening.
    Duval R; Kolb S; Braud E; Genest D; Garbay C
    J Comb Chem; 2009; 11(6):947-50. PubMed ID: 19835352
    [No Abstract]   [Full Text] [Related]  

  • 5. "Inject-mix-react-separate-and-quantitate" (IMReSQ) method for screening enzyme inhibitors.
    Wong E; Okhonin V; Berezovski MV; Nozaki T; Waldmann H; Alexandrov K; Krylov SN
    J Am Chem Soc; 2008 Sep; 130(36):11862-3. PubMed ID: 18702487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Slow-binding human serine racemase inhibitors from high-throughput screening of combinatorial libraries.
    Dixon SM; Li P; Liu R; Wolosker H; Lam KS; Kurth MJ; Toney MD
    J Med Chem; 2006 Apr; 49(8):2388-97. PubMed ID: 16610782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combinatorial approach toward synthesis of small molecule libraries as bacterial transglycosylase inhibitors.
    Shih HW; Chen KT; Chen SK; Huang CY; Cheng TJ; Ma C; Wong CH; Cheng WC
    Org Biomol Chem; 2010 Jun; 8(11):2586-93. PubMed ID: 20485795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-throughput synthesis of azide libraries suitable for direct "click" chemistry and in situ screening.
    Srinivasan R; Tan LP; Wu H; Yang PY; Kalesh KA; Yao SQ
    Org Biomol Chem; 2009 May; 7(9):1821-8. PubMed ID: 19590777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibitors of FabI, an enzyme drug target in the bacterial fatty acid biosynthesis pathway.
    Lu H; Tonge PJ
    Acc Chem Res; 2008 Jan; 41(1):11-20. PubMed ID: 18193820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid diversity-oriented synthesis in microtiter plates for in situ screening of HIV protease inhibitors.
    Brik A; Muldoon J; Lin YC; Elder JH; Goodsell DS; Olson AJ; Fokin VV; Sharpless KB; Wong CH
    Chembiochem; 2003 Nov; 4(11):1246-8. PubMed ID: 14613121
    [No Abstract]   [Full Text] [Related]  

  • 11. High-throughput characterization and quality control of small-molecule combinatorial libraries.
    Kenseth JR; Coldiron SJ
    Curr Opin Chem Biol; 2004 Aug; 8(4):418-23. PubMed ID: 15288253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discovery of glutathione S-transferase inhibitors using dynamic combinatorial chemistry.
    Shi B; Stevenson R; Campopiano DJ; Greaney MF
    J Am Chem Soc; 2006 Jul; 128(26):8459-67. PubMed ID: 16802811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discovery of an Aurora kinase inhibitor through site-specific dynamic combinatorial chemistry.
    Cancilla MT; He MM; Viswanathan N; Simmons RL; Taylor M; Fung AD; Cao K; Erlanson DA
    Bioorg Med Chem Lett; 2008 Jul; 18(14):3978-81. PubMed ID: 18579375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-throughput screening of enzyme inhibition using an inhibitor gradient generated in a microchannel.
    Garcia E; Hasenbank MS; Finlayson B; Yager P
    Lab Chip; 2007 Feb; 7(2):249-55. PubMed ID: 17268628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-speed synthesis of potent C2-symmetric HIV-1 protease inhibitors by in-situ aminocarbonylations.
    Wannberg J; Kaiser NF; Vrang L; Samuelsson B; Larhed M; Hallberg A
    J Comb Chem; 2005; 7(4):611-7. PubMed ID: 16004505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discovering novel ligands for macromolecules using X-ray crystallographic screening.
    Nienaber VL; Richardson PL; Klighofer V; Bouska JJ; Giranda VL; Greer J
    Nat Biotechnol; 2000 Oct; 18(10):1105-8. PubMed ID: 11017052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expedient solid-phase synthesis of both symmetric and asymmetric diol libraries targeting aspartic proteases.
    Shi H; Liu K; Leong WW; Yao SQ
    Bioorg Med Chem Lett; 2009 Jul; 19(14):3945-8. PubMed ID: 19328682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid diversity-oriented synthesis in microtiter plates for in situ screening: discovery of potent and selective alpha-fucosidase inhibitors.
    Wu CY; Chang CF; Chen JS; Wong CH; Lin CH
    Angew Chem Int Ed Engl; 2003 Oct; 42(38):4661-4. PubMed ID: 14533157
    [No Abstract]   [Full Text] [Related]  

  • 19. Structure-based virtual screening approach to identify novel classes of Cdc25B phosphatase inhibitors.
    Park H; Li M; Choi J; Cho H; Ham SW
    Bioorg Med Chem Lett; 2009 Aug; 19(15):4372-5. PubMed ID: 19500977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discovery and combinatorial synthesis of fungal metabolites beauveriolides, novel antiatherosclerotic agents.
    Tomoda H; Doi T
    Acc Chem Res; 2008 Jan; 41(1):32-9. PubMed ID: 17803269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.