These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 16604375)
1. Production of marker-free transgenic Nierembergia caerulea using MAT vector system. Khan RS; Chin DP; Nakamura I; Mii M Plant Cell Rep; 2006 Sep; 25(9):914-9. PubMed ID: 16604375 [TBL] [Abstract][Full Text] [Related]
2. Generation of selectable marker-free transgenic eggplant resistant to Alternaria solani using the R/RS site-specific recombination system. Darwish NA; Khan RS; Ntui VO; Nakamura I; Mii M Plant Cell Rep; 2014 Mar; 33(3):411-21. PubMed ID: 24311155 [TBL] [Abstract][Full Text] [Related]
3. Development of disease-resistant marker-free tomato by R/RS site-specific recombination. Khan RS; Nakamura I; Mii M Plant Cell Rep; 2011 Jun; 30(6):1041-53. PubMed ID: 21293863 [TBL] [Abstract][Full Text] [Related]
4. Production of marker-free disease-resistant potato using isopentenyl transferase gene as a positive selection marker. Khan RS; Ntui VO; Chin DP; Nakamura I; Mii M Plant Cell Rep; 2011 Apr; 30(4):587-97. PubMed ID: 21184230 [TBL] [Abstract][Full Text] [Related]
5. Production of transgenic barrel medic (Medicago truncatula Gaernt.) using the ipt-type MAT vector system and impairment of Recombinase-mediated excision events. Scaramelli L; Balestrazzi A; Bonadei M; Piano E; Carbonera D; Confalonieri M Plant Cell Rep; 2009 Feb; 28(2):197-211. PubMed ID: 19011862 [TBL] [Abstract][Full Text] [Related]
6. A transformation vector for the production of marker-free transgenic plants containing a single copy transgene at high frequency. Sugita K; Kasahara T; Matsunaga E; Ebinuma H Plant J; 2000 Jun; 22(5):461-9. PubMed ID: 10849362 [TBL] [Abstract][Full Text] [Related]
7. Agrobacterium-mediated genetic transformation and development of herbicide-resistant sugarcane (Saccharum species hybrids) using axillary buds. Manickavasagam M; Ganapathi A; Anbazhagan VR; Sudhakar B; Selvaraj N; Vasudevan A; Kasthurirengan S Plant Cell Rep; 2004 Sep; 23(3):134-43. PubMed ID: 15133712 [TBL] [Abstract][Full Text] [Related]
8. Single-step transformation for generating marker-free transgenic rice using the ipt-type MAT vector system. Endo S; Sugita K; Sakai M; Tanaka H; Ebinuma H Plant J; 2002 Apr; 30(1):115-22. PubMed ID: 11967098 [TBL] [Abstract][Full Text] [Related]
9. Combining a regeneration-promoting ipt gene and site-specific recombination allows a more efficient apricot transformation and the elimination of marker genes. López-Noguera S; Petri C; Burgos L Plant Cell Rep; 2009 Dec; 28(12):1781-90. PubMed ID: 19820947 [TBL] [Abstract][Full Text] [Related]
10. Production of selectable marker-free transgenic tobacco plants using a non-selection approach: chimerism or escape, transgene inheritance, and efficiency. Li B; Xie C; Qiu H Plant Cell Rep; 2009 Mar; 28(3):373-86. PubMed ID: 19018535 [TBL] [Abstract][Full Text] [Related]
11. Cytokinin vectors mediate marker-free and backbone-free plant transformation. Richael CM; Kalyaeva M; Chretien RC; Yan H; Adimulam S; Stivison A; Weeks JT; Rommens CM Transgenic Res; 2008 Oct; 17(5):905-17. PubMed ID: 18320338 [TBL] [Abstract][Full Text] [Related]
12. Establishment of an efficient Agrobacterium tumefaciens-mediated leaf disc transformation of Thellungiella halophila. Li HQ; Xu J; Chen L; Li MR Plant Cell Rep; 2007 Oct; 26(10):1785-9. PubMed ID: 17551729 [TBL] [Abstract][Full Text] [Related]
13. Transformation of miniature potted rose (Rosa hybrida cv. Linda) with P( SAG12 )-ipt gene delays leaf senescence and enhances resistance to exogenous ethylene. Zakizadeh H; Lütken H; Sriskandarajah S; Serek M; Müller R Plant Cell Rep; 2013 Feb; 32(2):195-205. PubMed ID: 23207761 [TBL] [Abstract][Full Text] [Related]
14. Co-transformation using a negative selectable marker gene for the production of selectable marker gene-free transgenic plants. Park J; Lee YK; Kang BK; Chung WI Theor Appl Genet; 2004 Nov; 109(8):1562-7. PubMed ID: 15448898 [TBL] [Abstract][Full Text] [Related]
15. Agrobacterium-mediated genetic transformation of Perilla frutescens. Kim KH; Lee YH; Kim D; Park YH; Lee JY; Hwang YS; Kim YH Plant Cell Rep; 2004 Nov; 23(6):386-90. PubMed ID: 15368075 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of a morphological marker selection and excision system to generate marker-free transgenic cassava plants. Saelim L; Phansiri S; Suksangpanomrung M; Netrphan S; Narangajavana J Plant Cell Rep; 2009 Mar; 28(3):445-55. PubMed ID: 19093119 [TBL] [Abstract][Full Text] [Related]
17. Production of transgenic lily plants by Agrobacterium-mediated transformation. Hoshi Y; Kondo M; Mori S; Adachi Y; Nakano M; Kobayashi H Plant Cell Rep; 2004 Jan; 22(6):359-64. PubMed ID: 14685763 [TBL] [Abstract][Full Text] [Related]
18. Binary transformation systems based on 'shooter' mutants of Agrobacterium tumefaciens: a simple, efficient and universal gene transfer technology that permits marker gene elimination. Mihálka V; Balázs E; Nagy I Plant Cell Rep; 2003 Apr; 21(8):778-84. PubMed ID: 12789522 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of selection strategies alternative to nptII in genetic transformation of citrus. Ballester A; Cervera M; Peña L Plant Cell Rep; 2008 Jun; 27(6):1005-15. PubMed ID: 18317775 [TBL] [Abstract][Full Text] [Related]
20. Agrobacterium tumefaciens-mediated transformation of Indian mulberry, Morus indica cv. K2: a time-phased screening strategy. Bhatnagar S; Khurana P Plant Cell Rep; 2003 Mar; 21(7):669-75. PubMed ID: 12789417 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]