BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 16604514)

  • 1. The polarizable continuum model (PCM) interfaced with the fragment molecular orbital method (FMO).
    Fedorov DG; Kitaura K; Li H; Jensen JH; Gordon MS
    J Comput Chem; 2006 Jun; 27(8):976-85. PubMed ID: 16604514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy gradients in combined fragment molecular orbital and polarizable continuum model (FMO/PCM) calculation.
    Li H; Fedorov DG; Nagata T; Kitaura K; Jensen JH; Gordon MS
    J Comput Chem; 2010 Mar; 31(4):778-90. PubMed ID: 19569184
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polarizable continuum model with the fragment molecular orbital-based time-dependent density functional theory.
    Chiba M; Fedorov DG; Kitaura K
    J Comput Chem; 2008 Dec; 29(16):2667-76. PubMed ID: 18484637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extending the power of quantum chemistry to large systems with the fragment molecular orbital method.
    Fedorov DG; Kitaura K
    J Phys Chem A; 2007 Aug; 111(30):6904-14. PubMed ID: 17511437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions.
    Marenich AV; Cramer CJ; Truhlar DG
    J Phys Chem B; 2009 May; 113(18):6378-96. PubMed ID: 19366259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analytic gradient for second order Møller-Plesset perturbation theory with the polarizable continuum model based on the fragment molecular orbital method.
    Nagata T; Fedorov DG; Li H; Kitaura K
    J Chem Phys; 2012 May; 136(20):204112. PubMed ID: 22667545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupled-cluster theory based upon the fragment molecular-orbital method.
    Fedorov DG; Kitaura K
    J Chem Phys; 2005 Oct; 123(13):134103. PubMed ID: 16223271
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient and accurate solvation energy calculation from polarizable continuum models.
    Lin ST; Hsieh CM
    J Chem Phys; 2006 Sep; 125(12):124103. PubMed ID: 17014162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solvation model induced structural changes in peptides. A quantum chemical study on Ramachandran surfaces and conformers of alanine diamide using the polarizable continuum model.
    Hudáky I; Hudáky P; Perczel A
    J Comput Chem; 2004 Sep; 25(12):1522-31. PubMed ID: 15224396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A combined effective fragment potential-fragment molecular orbital method. I. The energy expression and initial applications.
    Nagata T; Fedorov DG; Kitaura K; Gordon MS
    J Chem Phys; 2009 Jul; 131(2):024101. PubMed ID: 19603964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Covalent bond fragmentation suitable to describe solids in the fragment molecular orbital method.
    Fedorov DG; Jensen JH; Deka RC; Kitaura K
    J Phys Chem A; 2008 Nov; 112(46):11808-16. PubMed ID: 18942816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polarization energy gradients in combined quantum mechanics, effective fragment potential, and polarizable continuum model calculations.
    Li H; Gordon MS
    J Chem Phys; 2007 Mar; 126(12):124112. PubMed ID: 17411113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Excitation energy transfer (EET) between molecules in condensed matter: a novel application of the polarizable continuum model (PCM).
    Iozzi MF; Mennucci B; Tomasi J; Cammi R
    J Chem Phys; 2004 Apr; 120(15):7029-40. PubMed ID: 15267604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The fragment molecular orbital method combined with density-functional tight-binding and the polarizable continuum model.
    Nishimoto Y; Fedorov DG
    Phys Chem Chem Phys; 2016 Aug; 18(32):22047-61. PubMed ID: 27215663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multilayer formulation of the fragment molecular orbital method (FMO).
    Fedorov DG; Ishida T; Kitaura K
    J Phys Chem A; 2005 Mar; 109(11):2638-46. PubMed ID: 16833570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How to model solvent effects on molecular properties using quantum chemistry? Insights from polarizable discrete or continuum solvation models.
    Kongsted J; Mennucci B
    J Phys Chem A; 2007 Oct; 111(39):9890-900. PubMed ID: 17845016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solvent effects on global reactivity properties for neutral and charged systems using the sequential Monte Carlo quantum mechanics model.
    Jaramillo P; Pérez P; Fuentealba P; Canuto S; Coutinho K
    J Phys Chem B; 2009 Apr; 113(13):4314-22. PubMed ID: 19320524
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular recognition mechanism of FK506 binding protein: an all-electron fragment molecular orbital study.
    Nakanishi I; Fedorov DG; Kitaura K
    Proteins; 2007 Jul; 68(1):145-58. PubMed ID: 17387719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The electrostatic origin of Abraham's solute polarity parameter.
    Arey JS; Green WH; Gschwend PM
    J Phys Chem B; 2005 Apr; 109(15):7564-73. PubMed ID: 16851869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new quantum method for electrostatic solvation energy of protein.
    Mei Y; Ji C; Zhang JZ
    J Chem Phys; 2006 Sep; 125(9):094906. PubMed ID: 16965118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.