These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 16604514)

  • 41. Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model.
    Cossi M; Rega N; Scalmani G; Barone V
    J Comput Chem; 2003 Apr; 24(6):669-81. PubMed ID: 12666158
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Water and alanine: from puddles(32) to ponds(49).
    Mullin JM; Gordon MS
    J Phys Chem B; 2009 Oct; 113(43):14413-20. PubMed ID: 19788284
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Influence of solvent polarity and hydrogen bonding on the electronic transition of coumarin 120: a TDDFT study.
    Zhao W; Pan L; Bian W; Wang J
    Chemphyschem; 2008 Aug; 9(11):1593-602. PubMed ID: 18615417
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Improving the efficiency and convergence of geometry optimization with the polarizable continuum model: new energy gradients and molecular surface tessellation.
    Li H; Jensen JH
    J Comput Chem; 2004 Sep; 25(12):1449-62. PubMed ID: 15224389
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Brueckner doubles coupled cluster method with the polarizable continuum model of solvation.
    Caricato M; Scalmani G; Frisch MJ
    J Chem Phys; 2011 Jun; 134(24):244113. PubMed ID: 21721618
    [TBL] [Abstract][Full Text] [Related]  

  • 46. System truncation accelerates binding affinity calculations with the fragment molecular orbital method: A benchmark study.
    Nakamura S; Akaki T; Nishiwaki K; Nakatani M; Kawase Y; Takahashi Y; Nakanishi I
    J Comput Chem; 2023 Mar; 44(7):824-831. PubMed ID: 36444861
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fully analytic energy gradient in the fragment molecular orbital method.
    Nagata T; Brorsen K; Fedorov DG; Kitaura K; Gordon MS
    J Chem Phys; 2011 Mar; 134(12):124115. PubMed ID: 21456653
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Conformational equilibrium of 1,2-dichloroethane in water: comparison of PCM and RISM-SCF methods.
    Lee JY; Yoshida N; Hirata F
    J Phys Chem B; 2006 Aug; 110(32):16018-25. PubMed ID: 16898759
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Analytic second derivative of the energy for density functional theory based on the three-body fragment molecular orbital method.
    Nakata H; Fedorov DG; Zahariev F; Schmidt MW; Kitaura K; Gordon MS; Nakamura S
    J Chem Phys; 2015 Mar; 142(12):124101. PubMed ID: 25833559
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Electronic coupling calculation and pathway analysis of electron transfer reaction using ab initio fragment-based method. I. FMO-LCMO approach.
    Nishioka H; Ando K
    J Chem Phys; 2011 May; 134(20):204109. PubMed ID: 21639426
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Electronic excitation energy calculation by the fragment molecular orbital method with three-body effects.
    Chiba M; Koido T
    J Chem Phys; 2010 Jul; 133(4):044113. PubMed ID: 20687639
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Study of the optical and magnetic properties of pyrimidine in water combining PCM and QM/MM methodologies.
    Manzoni V; Lyra ML; Gester RM; Coutinho K; Canuto S
    Phys Chem Chem Phys; 2010 Nov; 12(42):14023-33. PubMed ID: 20856965
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Conformational analysis of the tyrosine dipeptide analogue in the gas phase and in aqueous solution by a density functional/continuum solvent model.
    Langella E; Rega N; Improta R; Crescenzi O; Barone V
    J Comput Chem; 2002 Apr; 23(6):650-61. PubMed ID: 11939597
    [TBL] [Abstract][Full Text] [Related]  

  • 54. On the Importance of the Orbital Relaxation in Ground-State Coupled Cluster Calculations in Solution with the Polarizable Continuum Model of Solvation.
    Caricato M; Scalmani G
    J Chem Theory Comput; 2011 Dec; 7(12):4012-8. PubMed ID: 26598347
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Structures and properties of electronically excited chromophores in solution from the polarizable continuum model coupled to the time-dependent density functional theory.
    Mennucci B; Cappelli C; Guido CA; Cammi R; Tomasi J
    J Phys Chem A; 2009 Apr; 113(13):3009-20. PubMed ID: 19226132
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Quantum mechanical methods applied to excitation energy transfer: a comparative analysis on excitation energies and electronic couplings.
    Muñoz-Losa A; Curutchet C; Fdez Galván I; Mennucci B
    J Chem Phys; 2008 Jul; 129(3):034104. PubMed ID: 18647013
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A comparison between state-specific and linear-response formalisms for the calculation of vertical electronic transition energy in solution with the CCSD-PCM method.
    Caricato M
    J Chem Phys; 2013 Jul; 139(4):044116. PubMed ID: 23901969
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fragment Molecular Orbital Based Affinity Prediction toward Pyruvate Dehydrogenase Kinases: Insights into the Charge Transfer in Hydrogen Bond Networks.
    Akaki T; Nakamura S; Nishiwaki K; Nakanishi I
    Chem Pharm Bull (Tokyo); 2023 Apr; 71(4):299-306. PubMed ID: 36724968
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A state-specific polarizable continuum model time dependent density functional theory method for excited state calculations in solution.
    Improta R; Barone V; Scalmani G; Frisch MJ
    J Chem Phys; 2006 Aug; 125(5):054103. PubMed ID: 16942199
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Efficient implementation of the three-dimensional reference interaction site model method in the fragment molecular orbital method.
    Yoshida N
    J Chem Phys; 2014 Jun; 140(21):214118. PubMed ID: 24908001
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.