These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 16604532)
1. Silicon-substituted hydroxyapatite thin films: effect of annealing temperature on coating stability and bioactivity. Thian ES; Huang J; Best SM; Barber ZH; Bonfield W J Biomed Mater Res A; 2006 Jul; 78(1):121-8. PubMed ID: 16604532 [TBL] [Abstract][Full Text] [Related]
2. The response of osteoblasts to nanocrystalline silicon-substituted hydroxyapatite thin films. Thian ES; Huang J; Best SM; Barber ZH; Brooks RA; Rushton N; Bonfield W Biomaterials; 2006 May; 27(13):2692-8. PubMed ID: 16423389 [TBL] [Abstract][Full Text] [Related]
4. Suitability evaluation of sol-gel derived Si-substituted hydroxyapatite for dental and maxillofacial applications through in vitro osteoblasts response. Balamurugan A; Rebelo AH; Lemos AF; Rocha JH; Ventura JM; Ferreira JM Dent Mater; 2008 Oct; 24(10):1374-80. PubMed ID: 18417203 [TBL] [Abstract][Full Text] [Related]
5. A new way of incorporating silicon in hydroxyapatite (Si-HA) as thin films. Thian ES; Huang J; Best SM; Barber ZH; Bonfield W J Mater Sci Mater Med; 2005 May; 16(5):411-5. PubMed ID: 15875250 [TBL] [Abstract][Full Text] [Related]
6. Growth behavior of rat bone marrow cells on RF magnetron sputtered hydroxyapatite and dicalcium pyrophosphate coatings. Yan Y; Wolke JG; De Ruijter A; Yubao L; Jansen JA J Biomed Mater Res A; 2006 Jul; 78(1):42-9. PubMed ID: 16602122 [TBL] [Abstract][Full Text] [Related]
7. Osteoblast proliferation on hydroxyapatite thin coatings produced by right angle magnetron sputtering. Mello A; Hong Z; Rossi AM; Luan L; Farina M; Querido W; Eon J; Terra J; Balasundaram G; Webster T; Feinerman A; Ellis DE; Ketterson JB; Ferreira CL Biomed Mater; 2007 Jun; 2(2):67-77. PubMed ID: 18458438 [TBL] [Abstract][Full Text] [Related]
8. Increased osteoblast functions on undoped and yttrium-doped nanocrystalline hydroxyapatite coatings on titanium. Sato M; Sambito MA; Aslani A; Kalkhoran NM; Slamovich EB; Webster TJ Biomaterials; 2006 Apr; 27(11):2358-69. PubMed ID: 16337679 [TBL] [Abstract][Full Text] [Related]
9. Coating nanothickness degradable films on nanocrystalline hydroxyapatite particles to improve the bonding strength between nanohydroxyapatite and degradable polymer matrix. Nichols HL; Zhang N; Zhang J; Shi D; Bhaduri S; Wen X J Biomed Mater Res A; 2007 Aug; 82(2):373-82. PubMed ID: 17295227 [TBL] [Abstract][Full Text] [Related]
10. Pulsed laser deposition of hydroxyapatite thin films on Ti-6Al-4V: effect of heat treatment on structure and properties. Dinda GP; Shin J; Mazumder J Acta Biomater; 2009 Jun; 5(5):1821-30. PubMed ID: 19269271 [TBL] [Abstract][Full Text] [Related]
11. Coating of an apatite layer on polyamide films containing sulfonic groups by a biomimetic process. Kawai T; Ohtsuki C; Kamitakahara M; Miyazaki T; Tanihara M; Sakaguchi Y; Konagaya S Biomaterials; 2004 Aug; 25(19):4529-34. PubMed ID: 15120497 [TBL] [Abstract][Full Text] [Related]
12. UV-enhanced bioactivity and cell response of micro-arc oxidized titania coatings. Han Y; Chen D; Sun J; Zhang Y; Xu K Acta Biomater; 2008 Sep; 4(5):1518-29. PubMed ID: 18430620 [TBL] [Abstract][Full Text] [Related]
13. In vitro behavior of osteoblast-like cells on fluoridated hydroxyapatite coatings. Cheng K; Weng W; Wang H; Zhang S Biomaterials; 2005 Nov; 26(32):6288-95. PubMed ID: 15913766 [TBL] [Abstract][Full Text] [Related]
14. Nanocrystalline hydroxyapatite coatings from ultrasonated electrolyte: preparation, characterization, and osteoblast responses. Narayanan R; Kim SY; Kwon TY; Kim KH J Biomed Mater Res A; 2008 Dec; 87(4):1053-60. PubMed ID: 18257064 [TBL] [Abstract][Full Text] [Related]
15. Characterization and in vitro evaluation of biphasic calcium pyrophosphate-tricalciumphosphate radio frequency magnetron sputter coatings. Takahashi K; van den Beucken JJ; Wolke JG; Hayakawa T; Nishiyama N; Jansen JA J Biomed Mater Res A; 2008 Mar; 84(3):682-90. PubMed ID: 17635019 [TBL] [Abstract][Full Text] [Related]
16. Structural evolution of nanocrystalline silicon thin films synthesized in high-density, low-temperature reactive plasmas. Cheng Q; Xu S; Ostrikov KK Nanotechnology; 2009 May; 20(21):215606. PubMed ID: 19423937 [TBL] [Abstract][Full Text] [Related]
17. The influence of the crystallinity of electrostatic spray deposition-derived coatings on osteoblast-like cell behavior, in vitro. Siebers MC; Walboomers XF; Leeuwenburgh SC; Wolke JG; Jansen JA J Biomed Mater Res A; 2006 Aug; 78(2):258-67. PubMed ID: 16628711 [TBL] [Abstract][Full Text] [Related]
18. Novel silicon-doped hydroxyapatite (Si-HA) for biomedical coatings: an in vitro study using acellular simulated body fluid. Thian ES; Huang J; Best SM; Barber ZH; Bonfield W J Biomed Mater Res B Appl Biomater; 2006 Feb; 76(2):326-33. PubMed ID: 16080174 [TBL] [Abstract][Full Text] [Related]
19. Surface nanocrystallization of hydroxyapatite coating. Lu YP; Chen YM; Li ST; Wang JH Acta Biomater; 2008 Nov; 4(6):1865-72. PubMed ID: 18567551 [TBL] [Abstract][Full Text] [Related]
20. Kinetics of hydrothermal crystallization under saturated steam pressure and the self-healing effect by nanocrystallite for hydroxyapatite coatings. Yang CW; Lui TS Acta Biomater; 2009 Sep; 5(7):2728-37. PubMed ID: 19376760 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]