These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 16604680)

  • 1. Filter, collimator and moderating material to achieve boron neutron capture enhanced fast neutron therapy.
    Sweezy J; Hertel N; Lennox A
    Radiat Prot Dosimetry; 2005; 116(1-4 Pt 2):470-4. PubMed ID: 16604680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Boron neutron capture enhancement of fast neutron radiotherapy utilizing a moderated fast neutron beam.
    Burmeister J; Yudelev M; Kota C; Maughan RL
    Med Phys; 2005 Mar; 32(3):666-72. PubMed ID: 15839338
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monte Carlo optimisation of a BNCT facility for treating brain gliomas at the TAPIRO reactor.
    Nava E; Burn KW; Casalini L; Petrovich C; Rosi G; Sarotto M; Tinti R
    Radiat Prot Dosimetry; 2005; 116(1-4 Pt 2):475-81. PubMed ID: 16604681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dosimetry of the boron neutron capture reaction for BNCT and BNCEFNT.
    Burmeister J; Kota C; Maughan RL
    Strahlenther Onkol; 1999 Jun; 175 Suppl 2():115-8. PubMed ID: 10394417
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Designing accelerator-based epithermal neutron beams for boron neutron capture therapy.
    Bleuel DL; Donahue RJ; Ludewigt BA; Vujic J
    Med Phys; 1998 Sep; 25(9):1725-34. PubMed ID: 9775379
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A study on the optimum fast neutron flux for boron neutron capture therapy of deep-seated tumors.
    Rasouli FS; Masoudi SF
    Appl Radiat Isot; 2015 Feb; 96():45-51. PubMed ID: 25479433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A parameter study to determine the optimal source neutron energy in boron neutron capture therapy of brain tumours.
    Nievaart VA; Moss RL; Kloosterman JL; van der Hagen TH; van Dam H
    Phys Med Biol; 2004 Sep; 49(18):4277-92. PubMed ID: 15509065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast neutron beams for boron neutron capture therapy?
    Wolber G
    Z Med Phys; 2004; 14(1):55-63. PubMed ID: 15104011
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Teatment planning figures of merit in thermal and epithermal boron neutron capture therapy of brain tumours.
    Wallace SA; Mathur JN; Allen BJ
    Phys Med Biol; 1994 May; 39(5):897-906. PubMed ID: 15552092
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a dual phantom technique for measuring the fast neutron component of dose in boron neutron capture therapy.
    Sakurai Y; Tanaka H; Kondo N; Kinashi Y; Suzuki M; Masunaga S; Ono K; Maruhashi A
    Med Phys; 2015 Nov; 42(11):6651-7. PubMed ID: 26520755
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies on depth-dose-distribution controls by deuteration and void formation in boron neutron capture therapy.
    Sakurai Y
    Phys Med Biol; 2004 Aug; 49(15):3367-78. PubMed ID: 15379019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dose evaluation of boron neutron capture synovectomy using the THOR epithermal neutron beam: a feasibility study.
    Wu J; Chang SJ; Chuang KS; Hsueh YW; Yeh KC; Wang JN; Tsai WP
    Phys Med Biol; 2007 Mar; 52(6):1747-56. PubMed ID: 17327660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of the COG and MCNP codes in computational neutron capture therapy modeling, Part I: boron neutron capture therapy models.
    Culbertson CN; Wangerin K; Ghandourah E; Jevremovic T
    Health Phys; 2005 Aug; 89(2):127-34. PubMed ID: 16010123
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A method for fast evaluation of neutron spectra for BNCT based on in-phantom figure-of-merit calculation.
    Martín G
    Med Phys; 2003 Mar; 30(3):381-6. PubMed ID: 12674238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An accelerator-based epithermal neutron beam design for BNCT and dosimetric evaluation using a voxel head phantom.
    Lee DJ; Han CY; Park SH; Kim JK
    Radiat Prot Dosimetry; 2004; 110(1-4):655-60. PubMed ID: 15353726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A feasibility study of a deuterium-deuterium neutron generator-based boron neutron capture therapy system for treatment of brain tumors.
    Hsieh M; Liu Y; Mostafaei F; Poulson JM; Nie LH
    Med Phys; 2017 Feb; 44(2):637-643. PubMed ID: 28205309
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phantom materials for boron neutron capture therapy.
    Raaijmakers CP; Nottelman EL; Mijnheer BJ
    Phys Med Biol; 2000 Aug; 45(8):2353-61. PubMed ID: 10958199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comments on 'A microdosimetric study of the dose enhancement in a fast neutron beam due to boron capture'.
    Green S
    Phys Med Biol; 1994 May; 39(5):923-4. PubMed ID: 15552095
    [No Abstract]   [Full Text] [Related]  

  • 19. Preliminary treatment planning and dosimetry for a clinical trial of neutron capture therapy using a fission converter epithermal neutron beam.
    Kiger WS; Lu XQ; Harling OK; Riley KJ; Binns PJ; Kaplan J; Patel H; Zamenhof RG; Shibata Y; Kaplan ID; Busse PM; Palmer MR
    Appl Radiat Isot; 2004 Nov; 61(5):1075-81. PubMed ID: 15308195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of the epithermal neutron beam for Boron Neutron Capture Therapy at the Brookhaven Medical Research Reactor.
    Hu JP; Reciniello RN; Holden NE
    Health Phys; 2004 May; 86(5 Suppl):S103-9. PubMed ID: 15069299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.