These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 16604680)
21. The filter/moderator arrangement-optimisation for the boron-neutron capture therapy (BNCT). Tracz G; Dabkowski L; Dworak D; Pytel K; Woźnicka U Radiat Prot Dosimetry; 2004; 110(1-4):827-31. PubMed ID: 15353754 [TBL] [Abstract][Full Text] [Related]
22. Validation of dose planning calculations for boron neutron capture therapy using cylindrical and anthropomorphic phantoms. Koivunoro H; Seppälä T; Uusi-Simola J; Merimaa K; Kotiluoto P; Serén T; Kortesniemi M; Auterinen I; Savolainen S Phys Med Biol; 2010 Jun; 55(12):3515-33. PubMed ID: 20508317 [TBL] [Abstract][Full Text] [Related]
23. Beam collimation and bolusing material optimizations for 10boron neutron capture enhancement of fast neutron (BNCEFN): definition of the optimum irradiation technique. Pignol JP; Paquis P; Cuendet P; Gibon D; Diop CM; Sabattier R Int J Radiat Oncol Biol Phys; 1999 Mar; 43(5):1151-9. PubMed ID: 10192367 [TBL] [Abstract][Full Text] [Related]
24. BNCT dose distribution in liver with epithermal D-D and D-T fusion-based neutron beams. Koivunoro H; Bleuel DL; Nastasi U; Lou TP; Reijonen J; Leung KN Appl Radiat Isot; 2004 Nov; 61(5):853-9. PubMed ID: 15308157 [TBL] [Abstract][Full Text] [Related]
25. Sensitivity studies of beam directionality, beam size, and neutron spectrum for a fission converter-based epithermal neutron beam for boron neutron capture therapy. Sakamoto S; Kiger WS; Harling OK Med Phys; 1999 Sep; 26(9):1979-88. PubMed ID: 10505888 [TBL] [Abstract][Full Text] [Related]
26. Optimum design of a moderator system based on dose calculation for an accelerator driven Boron Neutron Capture Therapy. Inoue R; Hiraga F; Kiyanagi Y Appl Radiat Isot; 2014 Jun; 88():225-8. PubMed ID: 24440538 [TBL] [Abstract][Full Text] [Related]
27. A toolkit for epithermal neutron beam characterisation in BNCT. Auterinen I; Serén T; Uusi-Simola J; Kosunen A; Savolainen S Radiat Prot Dosimetry; 2004; 110(1-4):587-93. PubMed ID: 15353713 [TBL] [Abstract][Full Text] [Related]
28. Evaluation of the characteristics of boron-dose enhancer (BDE) materials for BNCT using near threshold 7Li(p,n)7Be direct neutrons. Bengua G; Kobayashi T; Tanaka K; Nakagawa Y Phys Med Biol; 2004 Mar; 49(5):819-31. PubMed ID: 15070205 [TBL] [Abstract][Full Text] [Related]
29. Application of adjoint Monte Carlo to accelerate simulations of mono-directional beams in treatment planning for boron neutron capture therapy. Nievaart VA; Légràdy D; Moss RL; Kloosterman JL; van der Hagen TH; van Dam H Med Phys; 2007 Apr; 34(4):1321-35. PubMed ID: 17500463 [TBL] [Abstract][Full Text] [Related]
30. Determination of neutron flux distribution in an Am-Be irradiator using the MCNP. Shtejer-Diaz K; Zamboni CB; Zahn GS; Zevallos-Chávez JY Appl Radiat Isot; 2003 Oct; 59(4):263-6. PubMed ID: 14522234 [TBL] [Abstract][Full Text] [Related]
31. Dose calculation from a D-D-reaction-based BSA for boron neutron capture synovectomy. Abdalla K; Naqvi AA; Maalej N; Elshahat B Appl Radiat Isot; 2010; 68(4-5):751-4. PubMed ID: 19828325 [TBL] [Abstract][Full Text] [Related]
32. Monte Carlo calculations of lung dose in ORNL phantom for boron neutron capture therapy. Krstic D; Markovic VM; Jovanovic Z; Milenkovic B; Nikezic D; Atanackovic J Radiat Prot Dosimetry; 2014 Oct; 161(1-4):269-73. PubMed ID: 24435912 [TBL] [Abstract][Full Text] [Related]
33. Monte-Carlo calculations for the development of a BNCT neutron source at the Kyiv Research Reactor. Gritzay OO; Kalchenko OI; Klimova NA; Razbudey VF; Sanzhur AI; Binney SE Appl Radiat Isot; 2004 Nov; 61(5):869-73. PubMed ID: 15308160 [TBL] [Abstract][Full Text] [Related]
34. An improved neutron collimator for brain tumor irradiations in clinical boron neutron capture therapy. Liu HB; Greenberg DD; Capala J; Wheeler FJ Med Phys; 1996 Dec; 23(12):2051-60. PubMed ID: 8994170 [TBL] [Abstract][Full Text] [Related]
35. Computational assessment of improved cell-kill by gadolinium-supplemented boron neutron capture therapy. Culbertson CN; Jevremovic T Phys Med Biol; 2003 Dec; 48(23):3943-59. PubMed ID: 14703168 [TBL] [Abstract][Full Text] [Related]
37. GE PETtrace cyclotron as a neutron source for boron neutron capture therapy. Bosko A; Zhilchenkov D; Reece WD Appl Radiat Isot; 2004 Nov; 61(5):1057-62. PubMed ID: 15308192 [TBL] [Abstract][Full Text] [Related]
38. Use of the CT images for BNCT calculation: development of BNCT treatment planning system and its applications to dose calculation for voxel phantoms. Park SH; Han CY; Kim SY; Kim JK Radiat Prot Dosimetry; 2004; 110(1-4):661-7. PubMed ID: 15353727 [TBL] [Abstract][Full Text] [Related]
39. Use of low-pressure tissue equivalent proportional counters for the dosimetry of neutron beams used in BNCT and BNCEFNT. Kota C; Maughan RL; Tattam D; Beynon TD Med Phys; 2000 Mar; 27(3):535-48. PubMed ID: 10757605 [TBL] [Abstract][Full Text] [Related]
40. A prototype epithermal neutron beam for boron neutron capture therapy. Noonan DJ; Russell JL; Brugger RM Med Phys; 1986; 13(2):211-6. PubMed ID: 3010065 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]