BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 16604714)

  • 1. Assessment of mammography spectra using compton spectrometry techniques.
    Burgos MC; Gallardo S; Puchades V; Verdú G; Ródenas J; Villaescusa JI
    Radiat Prot Dosimetry; 2005; 116(1-4 Pt 2):627-30. PubMed ID: 16604714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of shielding materials in a Compton spectrometer applied to x-ray tube quality control using Monte Carlo simulation.
    Gallardo S; Ródenas J; Verdú G; Villaescusa JI
    Radiat Prot Dosimetry; 2005; 115(1-4):375-9. PubMed ID: 16381749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monte carlo simulation of x-ray spectra in diagnostic radiology and mammography using MCNP4C.
    Ay MR; Shahriari M; Sarkar S; Adib M; Zaidi H
    Phys Med Biol; 2004 Nov; 49(21):4897-917. PubMed ID: 15584526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monte carlo simulation of the compton scattering technique applied to characterize diagnostic x-ray spectra.
    Gallardo S; Ródenas J; Verdú G
    Med Phys; 2004 Jul; 31(7):2082-90. PubMed ID: 15305461
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ambient dose equivalent and effective dose from scattered x-ray spectra in mammography for Mo/Mo, Mo/Rh and W/Rh anode/filter combinations.
    Künzel R; Herdade SB; Costa PR; Terini RA; Levenhagen RS
    Phys Med Biol; 2006 Apr; 51(8):2077-91. PubMed ID: 16585846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of different computational models for generation of x-ray spectra in diagnostic radiology and mammography.
    Ay MR; Sarkar S; Shahriari M; Sardari D; Zaidi H
    Med Phys; 2005 Jun; 32(6):1660-75. PubMed ID: 16013725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of subject contrast and normalized average glandular dose by semi-analytical models.
    Tomal A; Poletti ME; Caldas LV
    Appl Radiat Isot; 2010; 68(4-5):755-9. PubMed ID: 19836251
    [TBL] [Abstract][Full Text] [Related]  

  • 8. X-ray scattering in full-field digital mammography.
    Nykänen K; Siltanen S
    Med Phys; 2003 Jul; 30(7):1864-73. PubMed ID: 12906205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of mammographic x-ray spectra: simulation with EGSnrc and experiment with CdTe detector.
    Nigapruke K; Puwanich P; Phaisangittisakul N; Youngdee W
    J Radiat Res; 2009 Nov; 50(6):507-12. PubMed ID: 19696472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effective dose evaluation for chest and abdomen X-ray tests.
    Lee SC; Wang JN; Liu SC; Jiang SH
    Radiat Prot Dosimetry; 2005; 116(1-4 Pt 2):613-9. PubMed ID: 16604711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Grid removal and impact on population dose in full-field digital mammography.
    Gennaro G; Katz L; Souchay H; Klausz R; Alberelli C; di Maggio C
    Med Phys; 2007 Feb; 34(2):547-55. PubMed ID: 17388172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An iterative three-dimensional electron density imaging algorithm using uncollimated compton scattered x rays from a polyenergetic primary pencil beam.
    Van Uytven E; Pistorius S; Gordon R
    Med Phys; 2007 Jan; 34(1):256-65. PubMed ID: 17278511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Breast dose in mammography is about 30% lower when realistic heterogeneous glandular distributions are considered.
    Hernandez AM; Seibert JA; Boone JM
    Med Phys; 2015 Nov; 42(11):6337-48. PubMed ID: 26520725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Introducing DeBRa: a detailed breast model for radiological studies.
    Ma AK; Gunn S; Darambara DG
    Phys Med Biol; 2009 Jul; 54(14):4533-45. PubMed ID: 19556683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. X-ray spectroscopy applied to radiation shielding calculation in mammography.
    Künzel R; Levenhagen RS; Herdade SB; Terini RA; Costa PR
    Med Phys; 2008 Aug; 35(8):3539-45. PubMed ID: 18777914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectra of clinical CT scanners using a portable Compton spectrometer.
    Duisterwinkel HA; van Abbema JK; van Goethem MJ; Kawachimaru R; Paganini L; van der Graaf ER; Brandenburg S
    Med Phys; 2015 Apr; 42(4):1884-94. PubMed ID: 25832078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monte Carlo simulation of a computed tomography x-ray tube.
    Bazalova M; Verhaegen F
    Phys Med Biol; 2007 Oct; 52(19):5945-55. PubMed ID: 17881811
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of the diagnostic radiological index of protection to protective garments.
    Pasciak AS; Jones AK; Wagner LK
    Med Phys; 2015 Feb; 42(2):653-662. PubMed ID: 28102605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of conversion factors from air kerma to operational dose equivalent quantities for low-energy X-ray spectra.
    Hakanen A; Kosunen A; Pöyry P; Tapiovaara M
    Radiat Prot Dosimetry; 2007; 125(1-4):198-204. PubMed ID: 17172628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Monte Carlo based method to estimate radiation dose from multidetector CT (MDCT): cylindrical and anthropomorphic phantoms.
    DeMarco JJ; Cagnon CH; Cody DD; Stevens DM; McCollough CH; O'Daniel J; McNitt-Gray MF
    Phys Med Biol; 2005 Sep; 50(17):3989-4004. PubMed ID: 16177525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.