These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 16605020)
1. Modelling of wastewater treatment plants--how far shall we go with sophisticated modelling tools? Glover GC; Printemps C; Essemiani K; Meinhold J Water Sci Technol; 2006; 53(3):79-89. PubMed ID: 16605020 [TBL] [Abstract][Full Text] [Related]
2. Modelling of full-scale wastewater treatment plants with different treatment processes using the Activated Sludge Model no. 3. Wichern M; Obenaus F; Wulf P; Rosenwinkel KH Water Sci Technol; 2001; 44(1):49-56. PubMed ID: 11496677 [TBL] [Abstract][Full Text] [Related]
3. iCFD: Interpreted Computational Fluid Dynamics - Degeneration of CFD to one-dimensional advection-dispersion models using statistical experimental design - The secondary clarifier. Guyonvarch E; Ramin E; Kulahci M; Plósz BG Water Res; 2015 Oct; 83():396-411. PubMed ID: 26248321 [TBL] [Abstract][Full Text] [Related]
4. CFD-aided modelling of activated sludge systems - A critical review. Karpinska AM; Bridgeman J Water Res; 2016 Jan; 88():861-879. PubMed ID: 26615385 [TBL] [Abstract][Full Text] [Related]
5. A protocol for the use of computational fluid dynamics as a supportive tool for wastewater treatment plant modelling. Laurent J; Samstag RW; Ducoste JM; Griborio A; Nopens I; Batstone DJ; Wicks JD; Saunders S; Potier O Water Sci Technol; 2014; 70(10):1575-84. PubMed ID: 25429444 [TBL] [Abstract][Full Text] [Related]
6. Mixing characterisation of full-scale membrane bioreactors: CFD modelling with experimental validation. Brannock M; Wang Y; Leslie G Water Res; 2010 May; 44(10):3181-91. PubMed ID: 20347471 [TBL] [Abstract][Full Text] [Related]
7. Good modelling practice in applying computational fluid dynamics for WWTP modelling. Wicklein E; Batstone DJ; Ducoste J; Laurent J; Griborio A; Wicks J; Saunders S; Samstag R; Potier O; Nopens I Water Sci Technol; 2016; 73(5):969-82. PubMed ID: 26942517 [TBL] [Abstract][Full Text] [Related]
8. Flow field prediction in full-scale Carrousel oxidation ditch by using computational fluid dynamics. Yang Y; Wu Y; Yang X; Zhang K; Yang J Water Sci Technol; 2010; 62(2):256-65. PubMed ID: 20651428 [TBL] [Abstract][Full Text] [Related]
9. Activated sludge model (ASM) based modelling of membrane bioreactor (MBR) processes: a critical review with special regard to MBR specificities. Fenu A; Guglielmi G; Jimenez J; Spèrandio M; Saroj D; Lesjean B; Brepols C; Thoeye C; Nopens I Water Res; 2010 Aug; 44(15):4272-94. PubMed ID: 20619870 [TBL] [Abstract][Full Text] [Related]
10. Appraisal of chlorine contact tank modelling practices. Rauen WB; Angeloudis A; Falconer RA Water Res; 2012 Nov; 46(18):5834-47. PubMed ID: 22963866 [TBL] [Abstract][Full Text] [Related]
11. Efficiency of the Activated Sludge Model no. 3 for German wastewater on six different WWTPs. Wichern M; Lübken M; Blömer R; Rosenwinkel KH Water Sci Technol; 2003; 47(11):211-8. PubMed ID: 12906292 [TBL] [Abstract][Full Text] [Related]
12. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
13. Modelling and simulation of the steady-state of secondary settlers in wastewater treatment plants. Queinnec I; Dochain D Water Sci Technol; 2001; 43(7):39-46. PubMed ID: 11385873 [TBL] [Abstract][Full Text] [Related]
14. Model-based evaluation of nitrogen removal in a tannery wastewater treatment plant. Moussa MS; Rojas AR; Hooijmans CM; Gijzen HJ; van Loosdrecht MC Water Sci Technol; 2004; 50(6):251-60. PubMed ID: 15537014 [TBL] [Abstract][Full Text] [Related]
15. Activated sludge pilot plant: comparison between experimental and predicted concentration profiles using three different modelling approaches. Le Moullec Y; Potier O; Gentric C; Leclerc JP Water Res; 2011 May; 45(10):3085-97. PubMed ID: 21489593 [TBL] [Abstract][Full Text] [Related]
16. Study on two operating conditions of a full-scale oxidation ditch for optimization of energy consumption and effluent quality by using CFD model. Yang Y; Yang J; Zuo J; Li Y; He S; Yang X; Zhang K Water Res; 2011 May; 45(11):3439-52. PubMed ID: 21529877 [TBL] [Abstract][Full Text] [Related]
17. Evaluating two concepts for the modelling of intermediates accumulation during biological denitrification in wastewater treatment. Pan Y; Ni BJ; Lu H; Chandran K; Richardson D; Yuan Z Water Res; 2015 Mar; 71():21-31. PubMed ID: 25577690 [TBL] [Abstract][Full Text] [Related]
18. A compartmental model to describe hydraulics in a full-scale waste stabilization pond. Alvarado A; Vedantam S; Goethals P; Nopens I Water Res; 2012 Feb; 46(2):521-30. PubMed ID: 22137448 [TBL] [Abstract][Full Text] [Related]
19. An efficient hydrodynamic-biokinetic model for the optimization of operational strategy applied in a full-scale oxidation ditch by CFD integrated with ASM2. Xu Q; Wan Y; Wu Q; Xiao K; Yu W; Liang S; Zhu Y; Hou H; Liu B; Hu J; Yang Y; Yang J Water Res; 2021 Apr; 193():116888. PubMed ID: 33581403 [TBL] [Abstract][Full Text] [Related]
20. Validation of computational non-Newtonian fluid model for membrane bioreactor. Sørensen L; Bentzen TR; Skov K Water Sci Technol; 2015; 72(10):1810-6. PubMed ID: 26540543 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]