BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 16605021)

  • 1. Modification of ASM3 for the determination of biomass adsorption/storage capacity in bulking sludge control.
    Makinia J; Rosenwinkel KH; Phan LC
    Water Sci Technol; 2006; 53(3):91-9. PubMed ID: 16605021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental assessment and modelling of nitrate utilisation for primary sludge.
    Avcioğlu E; Sözen S; Orhon D; van Loosdrecht MC
    Water Sci Technol; 2002; 46(1-2):313-7. PubMed ID: 12216642
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of stoichiometric and kinetic coefficients of ASM3 under aerobic and anoxic conditions via respirometry.
    Avcioğlu E; Karahan-Gül O; Orhon D
    Water Sci Technol; 2003; 48(8):185-94. PubMed ID: 14682586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Limitations of ASM1 and ASM3: a comparison based on batch oxygen uptake rate profiles from different full-scale wastewater treatment plants.
    Guisasola A; Sin G; Baeza JA; Carrera J; Vanrolleghem PA
    Water Sci Technol; 2005; 52(10-11):69-77. PubMed ID: 16459778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aerobic storage by activated sludge on real wastewater.
    Carucci A; Dionisi D; Majone M; Rolle E; Smurra P
    Water Res; 2001 Nov; 35(16):3833-44. PubMed ID: 12230166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of feeding pattern and storage on the sludge settleability under aerobic conditions.
    Martins AM; Heijnen JJ; van Loosdrecht MC
    Water Res; 2003 Jun; 37(11):2555-70. PubMed ID: 12753833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of mechanistically based model for simulating soluble microbial products generation in an aerated/non-aerated SBR.
    Fan J; Ding Y; Qiu Z; Li W; Lu S
    Bioprocess Biosyst Eng; 2011 Nov; 34(9):1151-61. PubMed ID: 21750920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling the utilization of starch by activated sludge for simultaneous substrate storage and microbial growth.
    Karahan O; van Loosdrecht MC; Orhon D
    Biotechnol Bioeng; 2006 May; 94(1):43-53. PubMed ID: 16570312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bulking sludge in biological nutrient removal systems.
    Martins AM; Heijnen JJ; van Loosdrecht MC
    Biotechnol Bioeng; 2004 Apr; 86(2):125-35. PubMed ID: 15052632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure-function dynamics and modeling analysis of the micro-environment of activated sludge floc.
    Li B; Bishop P
    Water Sci Technol; 2003; 47(11):267-73. PubMed ID: 12906299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modification of Activated Sludge Model no. 3 considering direct growth on primary substrate.
    Karahan-Gül O; van Loosdrecht MC; Orhon D
    Water Sci Technol; 2003; 47(11):219-25. PubMed ID: 12906293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clarifying the roles of kinetics and diffusion in activated sludge filamentous bulking.
    Lou IC; de los Reyes FL
    Biotechnol Bioeng; 2008 Oct; 101(2):327-36. PubMed ID: 18433008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An activated sludge model based on activated sludge model number 3 for full-scale wastewater treatment plant simulation.
    Fan J; Lu SG; Qiu ZF; Wang XX; Li WZ
    Environ Technol; 2009 Jun; 30(7):641-9. PubMed ID: 19705601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calibration and validation of an ASM3-based steady-state model for activated sludge systems--part I: Prediction of nitrogen removal and sludge production.
    Koch G; Kühni M; Siegrist H
    Water Res; 2001 Jun; 35(9):2235-45. PubMed ID: 11358303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Testing the effect of selectors in the control of bulking and foaming in full scale activated-sludge plants.
    Davoli D; Madoni P; Guglielmi L; Pergetti M; Barilli S
    Water Sci Technol; 2002; 46(1-2):495-8. PubMed ID: 12216675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using a carbon-based ASM3 EAWAG Bio-P for modelling the enhanced biological phosphorus removal in anaerobic/aerobic activated sludge systems.
    Trutnau M; Petzold M; Mehlig L; Eschenhagen M; Geipel K; Müller S; Bley T; Röske I
    Bioprocess Biosyst Eng; 2011 Mar; 34(3):287-95. PubMed ID: 20872271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validity of Monod kinetics at different sludge ages--peptone biodegradation under aerobic conditions.
    Orhon D; Cokgor EU; Insel G; Karahan O; Katipoglu T
    Bioresour Technol; 2009 Dec; 100(23):5678-86. PubMed ID: 19604686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decay processes of nitrifying bacteria in biological wastewater treatment systems.
    Manser R; Gujer W; Siegrist H
    Water Res; 2006 Jul; 40(12):2416-26. PubMed ID: 16753196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The EAWAG Bio-P module for activated sludge model No. 3.
    Siegrist H; Rieger L; Koch G; Kühni M; Gujer W
    Water Sci Technol; 2002; 45(6):61-76. PubMed ID: 11989879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.